题目内容

16.如图,在等腰直角三角形ABC中,∠C=90°,AC=6,D是AC边上一点,若tan∠DBA=$\frac{1}{5}$,则tan∠CBD的值为(  )
A.$\frac{5}{6}$B.$\frac{2}{3}$C.1D.$\frac{\sqrt{2}}{2}$

分析 首先过点D作DE⊥AB于E,可得△ADE是等腰直角三角形,由tan∠DBA=$\frac{1}{5}$,易得BE=5DE=5AE,又由在等腰直角三角形ABC中,∠C=90°,AC=6,可求得AE,AD的长,继而求得CD的长,然后求得tan∠CBD的值.

解答 解:过点D作DE⊥AB于E,
∵tan∠DBA=$\frac{1}{5}$=$\frac{DE}{BE}$,
∴BE=5DE,
∵△ABC为等腰直角三角形,
∴∠A=45°,
∴AE=DE,
∴BE=5AE,
又∵AC=6,
∴AB=6$\sqrt{2}$,
∴AE+BE=AE+5AE=6$\sqrt{2}$,
∴AE=$\sqrt{2}$,
∴AD=$\sqrt{2}$AE=2,
∴CD=AC-AD=6-2=4.
∵在Rt△BCD中,∠C=90°,CD=4,BC=AC=6,
∴tan∠CBD=$\frac{CD}{BC}$=$\frac{4}{6}$=$\frac{2}{3}$.
故选B.

点评 此题考查了解直角三角形,等腰直角三角形的性质,勾股定理以及三角函数的定义.此题难度适中,注意掌握辅助线的作法,注意数形结合思想的应用.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网