题目内容

15.如图,菱形OABC的顶点A的坐标为(2,0),∠COA=60°,将菱形OABC绕坐标原点O逆时针旋转120°得到菱形ODEF.
(1)直接写出点F的坐标;
(2)求线段OB的长及图中阴影部分的面积.

分析 (1)由菱形OABC的顶点A的坐标为(2,0),可求得OA=2,又由将菱形OABC绕坐标原点O逆时针旋转120°得到菱形ODEF,∠COA=60°,可得点F在x轴的负半轴上,且OF=2,继而求得点F的坐标;
(2)首先过点B作BG⊥x轴于点G,连接OE,OB,可求得∠AOB=∠EOF=30°,AB=OA=2,继而求得线段BG的长,则可求得扇形EOB与菱形OABC的面积,继而求得答案.

解答 解:(1)∵菱形OABC的顶点A的坐标为(2,0),
∴OA=2,
∵将菱形OABC绕坐标原点O逆时针旋转120°得到菱形ODEF,∠COA=60°,
∴∠AOF=180°,OF=2,
即点F在x轴的负半轴上,
∴点F(-2,0);

(2)过点B作BG⊥x轴于点G,连接OE,OB,
则∠AOB=∠EOF=30°,AB=OA=2,
∴∠BAG=60°,
∴∠ABG=30°,
∴AG=$\frac{1}{2}$AB=1,BG=$\sqrt{A{B}^{2}-A{G}^{2}}$=$\sqrt{3}$,
∴OB=2BG=2$\sqrt{3}$,
∵∠BOE=120°,
∴S扇形=$\frac{120×π×(2\sqrt{3})^{2}}{360}$=4π,S菱形OABC=OA•BG=2$\sqrt{3}$,
∴S阴影=S扇形-S菱形OABC=4π-2$\sqrt{3}$.

点评 此题考查了菱形的性质、旋转的性质以及扇形的面积.注意准确作出辅助线是解此题的关键.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网