题目内容

19.如图,Rt△ABC中,∠C=90°,AC=BC=6cm,E是斜边AB上任意一点,点E到两直角边的距离之和为6cm.

分析 推出四边形FCGE是矩形,得出FC=EG,FE=CG,EF∥CG,EG∥CA,求出∠BEG=∠B,推出EG=BG,同理AF=EF,求出EF+EG=AC=BC即可.

解答 解:∵∠C=90°,EF⊥AC,EG⊥BC,
∴∠C=∠EFC=∠EGC=90°,
∴四边形FCGE是矩形,
∴FC=EG,FE=CG,EF∥CG,EG∥CA,
∴∠BEG=∠A=45°=∠B,
∴EG=BG,
同理AF=EF,
∴EF+EG=CG+CB=BC=6cm,
故答案为:6.

点评 本题考查了等腰三角形的性质、等腰直角三角形、矩形的判定和性质,能求出矩形CFEG的周长=AC+BC是解此题的关键.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网