题目内容

如图,将左图中的阴影部分裁剪下来,重新拼成一个如右图的长方形.
(1)根据两个图中阴影部分的面积相等,可以得到一个数学公式
 
,这个公式的名称叫
 

(2)根据你在(1)中得到的公式计算下列算式:(1-
1
22
)(1-
1
32
)(1-
1
42
)(1-
1
52
)…(1-
1
992
)(1-
1
1002
).
考点:平方差公式的几何背景
专题:
分析:(1)利用面积公式:大正方形的面积-小正方形的面积=阴影面积;利用矩形公式即可求解;利用面积相等列出等式即可;是平方差公式.
(2)利用平方差公式简便计算.
解答:解:(1)图1的面积为a2-b2,图2的面积为(a+b)(a-b);比较两图的阴影部分面积,可以得到乘法公式a2-b2=(a+b)(a-b).

(2)原式=(1-
1
2
)(1+
1
2
)(1-
1
3
)(1+
1
3
)
(1-
1
99
)(1+
1
99
)(1-
1
100
)(1+
1
100
)

=
1
2
×
3
2
×
2
3
×
4
3
×
98
99
×
100
99
×
99
100
×
101
100

=
101
200
点评:本题综合考查了证明平方差公式和使用平方差公式的能力.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网