题目内容
观察下列分母有理化的运算:
=-1+
,
=-
+
,
=-
+
,…,
=-
+
,
=-
+
,
(1)利用上面的规律计算:
(
+
+
+…+
+
)×(1+
);
(2)计算:
+
+
+…+
+
.
| 1 | ||
1+
|
| 2 |
| 1 | ||||
|
| 2 |
| 3 |
| 1 | ||||
|
| 3 |
| 4 |
| 1 | ||||
|
| 2001 |
| 2002 |
| 1 | ||||
|
| 2002 |
| 2003 |
(1)利用上面的规律计算:
(
| 1 | ||
1+
|
| 1 | ||||
|
| 1 | ||||
|
| 1 | ||||
|
| 1 | ||||
|
| 2003 |
(2)计算:
| 1 | ||
1+
|
| 1 | ||||
|
| 1 | ||||
|
| 1 | ||||
|
| 1 | ||||
|
考点:分母有理化
专题:规律型
分析:(1)利用规律列式计算,再根据二次根式的乘法运算进行计算即可得解;
(2)根据分母有理化进行整理,再根据二次根式的加减运算进行计算即可得解.
(2)根据分母有理化进行整理,再根据二次根式的加减运算进行计算即可得解.
解答:解:(1)(
+
+
+…+
+
)×(1+
)
=(
-1+
-
+
-
+…+
-
+
-
)×(1+
)
=(
-1)×(1+
)
=2003-1
=2002;
(2)
+
+
+…+
+
=
+
+
+…+
+
=
(
-1+
-
+
-
+…+
-
+
-
)
=
(
+
-
-1).
| 1 | ||
1+
|
| 1 | ||||
|
| 1 | ||||
|
| 1 | ||||
|
| 1 | ||||
|
| 2003 |
=(
| 2 |
| 3 |
| 2 |
| 4 |
| 3 |
| 2002 |
| 2001 |
| 2003 |
| 2002 |
| 2003 |
=(
| 2003 |
| 2003 |
=2003-1
=2002;
(2)
| 1 | ||
1+
|
| 1 | ||||
|
| 1 | ||||
|
| 1 | ||||
|
| 1 | ||||
|
=
| ||
| 2 |
| ||||
| 2 |
| ||||
| 2 |
| ||||
| 2 |
| ||||
| 2 |
=
| 1 |
| 2 |
| 3 |
| 4 |
| 2 |
| 5 |
| 3 |
| 2013 |
| 2011 |
| 2014 |
| 2012 |
=
| 1 |
| 2 |
| 2014 |
| 2013 |
| 2 |
点评:本题考查了分母有理化,读懂题目信息理解分母有理化并把所求算式准确化简是解题的关键,难点在于(2)确定出抵消后的二次根式.
练习册系列答案
相关题目