题目内容

已知:如图,在平面直角坐标系xOy中,一次函数y=-4x+8的图象分别与x、y轴交于点A、B,点P在x轴的负半轴上,△ABP的面积为12.若一次函数y=kx+b的图象经过点P和点B,求这个一次函数y=kx+b表达式.
考点:待定系数法求一次函数解析式
专题:计算题
分析:对于一次函数y=-4x+8,分别令y与x为0求出x与y的值,确定出A与B坐标,根据三角形PAB面积求出AP的长,确定出P坐标,将P与B坐标代入求出k与b的值,即可确定出一次函数解析式.
解答:解:对于一次函数y=-4x+8,
令y=0,得x=2,∴A点坐标为(2,0)
令x=0,得 y=8,∴B点坐标为(0,8),
∵S△APB=12,
1
2
•AP•8=12,即AP=3,
∴P点的坐标分别为P1(-1,0)或P2(5,0),
∵点P在x轴的负半轴上,
∴P(-1,0),
∵一次函数y=kx+b的图象经过点P和点B,
∴将P与B坐标代入得:
-k+b=0
b=8

解得:
k=8
b=8.

∴这个一次函数y=kx+b的表达式为y=8x+8.
点评:此题考查了待定系数法求一次函数解析式,熟练掌握待定系数法是解本题的关键.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网