题目内容

8.计算:$\frac{({2}^{4}+\frac{1}{4})({4}^{4}+\frac{1}{4})({6}^{4}+\frac{1}{4})({8}^{4}+\frac{1}{4})(1{0}^{4}+\frac{1}{4})}{({1}^{4}+\frac{1}{4})({3}^{4}+\frac{1}{4})({5}^{4}+\frac{1}{4})({7}^{4}+\frac{1}{4})({9}^{4}+\frac{1}{4})}$.

分析 观察$\frac{({2}^{4}+\frac{1}{4})({4}^{4}+\frac{1}{4})({6}^{4}+\frac{1}{4})({8}^{4}+\frac{1}{4})(1{0}^{4}+\frac{1}{4})}{({1}^{4}+\frac{1}{4})({3}^{4}+\frac{1}{4})({5}^{4}+\frac{1}{4})({7}^{4}+\frac{1}{4})({9}^{4}+\frac{1}{4})}$,发现规律:均包含有x4+$\frac{1}{4}$的形式,因而对其进行因式分解得(x2-x+$\frac{1}{2}$)(x2+x+$\frac{1}{2}$).将此规律运用到原式中,通过对分子、分母约分化简,最后求出原式的值.

解答 解:x4+$\frac{1}{4}$=[(x22+x2+$\frac{1}{4}$]-x2=(x2+$\frac{1}{2}$)2-x2=(x2+$\frac{1}{2}$+x)(x2+$\frac{1}{2}$-x),
原式=$\frac{\frac{5}{2}×\frac{13}{2}×\frac{25}{2}×\frac{41}{2}×\frac{59}{2}×\frac{85}{2}×\frac{113}{2}×\frac{145}{2}×\frac{181}{2}×\frac{221}{2}}{\frac{1}{2}×\frac{5}{2}×\frac{13}{2}×\frac{25}{2}×\frac{41}{2}×\frac{59}{2}×\frac{85}{2}×\frac{113}{2}×\frac{145}{2}×\frac{181}{2}}$
=$\frac{\frac{221}{2}}{\frac{1}{2}}$=221.

点评 本题考查了有理数无理数的概念与运算,发现规律:均包含有x4+$\frac{1}{4}$的形式,因而对其进行因式分解得(x2-x+$\frac{1}{2}$)(x2+x+$\frac{1}{2}$)是解题关键.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网