题目内容
【题目】问题再现:
数形结合是解决数学问题的一种重要的思想方法,借助这种方法可将抽象的数学知识变得直观起来并且具有可操作性,从而可以帮助我们快速解题.初中数学里的一些代数公式,很多都可以通过表示几何图形面积的方法进行直观推导和解释.例如:利用图形的几何意义推证完全平方公式.将一个边长为a的正方形的边长增加b,形成两个矩形和两个正方形,如图1,这个图形的面积可以表示成:(a+b)2或a2+2ab+b2∴(a+b)2=a2+2ab+b2
这就验证了两数和的完全平方公式.
问题提出:
如何利用图形几何意义的方法推证:13+23=32 如图2,A表示1个1×1的正方形,即:1×1×1=13,B表示1个2×2的正方形,C与D恰好可以拼成1个2×2的正方形,因此:B、C、D就可以表示2个2×2的正方形,即:2×2×2=23,而A、B、C、D恰好可以拼成一个(1+2)×(1+2)的大正方形,由此可得:13+23=(1+2)2=32
尝试解决:
请你类比上述推导过程,利用图形几何意义方法推证:13+23+33= (要求自己构造图形并写出推证过程)
类比归纳:
请用上面的表示几何图形面积的方法探究:13+23+33+…+n3= (要求直接写出结论,不必写出解题过程)
实际应用:
图3是由棱长为1的小正方体搭成的大正方体,图中大小正方体一共有多少个?为了正确数出大小正方体的总个数,我们可以分类统计,即分别数出棱长是1,2,3和4的正方体的个数,再求总和.
例如:棱长是1的正方体有:4×4×4=43个,棱长是2的正方体有:3×3×3=33个,棱长是3的正方体有:2×2×2=23个,棱长是4的正方体有:1×1×l=13个,然后利用(3)类比归纳的结论,可得: = 图4是由棱长为1的小正方体成的大正方体,图中大小正方体一共有 个.
逆向应用:
如果由棱长为1的小正方体搭成的大正方体中,通过上面的方式数出的大小正方体一共有44100个,那么棱长为1的小正方体一共有 个.
![]()
【答案】(1)(1+2+3)2;(2)(1+2+3+…+n)2;(3)13+23+33+43,(1+2+3+4)2,100个;(4)8000.
【解析】
根据规律可以利用相同的方法进行探究推证,由于是探究13+23+33=?肯定构成大正方形有9个基本图形(3个正方形6个长方形)组成,如图所示可以推证.
实际应用:根据规律求大正方体中含有多少个正方体,可以转化为13+23+33+…+n3=(1+2+3+…+n)2来求得.
逆向应用:可将总个数看成m2,然后再写成=(1+2+3+…+n)2得出大正方形每条边上有几个棱长为1的小正方体,进而计算出棱长为1的小正方体的个数.
解:如图,A表示1个1×1的正方形,即1×1×1=13;
B表示1个2×2的正方形,C与D恰好可以拼成1个2×2的正方形,
因此B、C、D就可以拼成2个2×2的正方形,即:2×2×2=23;
G与H、E与F和可以拼成3个3×3的正方形,即:3×3×3=33;
而整个图形恰好可以拼成一个(1+2+3)×(1+2+3)的大正方形,
因此可得:13+23+33=(1+2+3)2=62.
故答案为:(1+2+3)2或62.
根据规律可得:13+23+33+…+n3=(1+2+3+…+n)2.
依据规律得:13+23+33+43=(1+2+3+4)2=102=100.
故答案为:13+23+33+43=(1+2+3+4)2 100
∵44100=2102=(1+2+3+…+n)2
∴n=20
∴20×20×20=8000
故答案为8000.
![]()
【题目】为了给游客提供更好的服务,某景区随机对部分游客进行了关于“景区服务工作满意度”的调查,并根据调查结果绘制成如下不完整的统计图表.
满意度 | 人数 | 所占百分比 |
非常满意 | 12 | 10% |
满意 | 54 | m |
比较满意 | n | 40% |
不满意 | 6 | 5% |
![]()
根据图表信息,解答下列问题:
(1)本次调查的总人数为______,表中m的值为_______;
(2)请补全条形统计图;
(3)据统计,该景区平均每天接待游客约3600人,若将“非常满意”和“满意”作为游客对景区服务工作的肯定,请你估计该景区服务工作平均每天得到多少名游客的肯定.
【题目】某部门为了解工人的生产能力情况,进行了抽样调查.该部门随机抽取了20名工人某天每人加工零件的个数,数据如下:整理上面数据,得到条形统计图;样本数据的平均数、众数、中位数如表所示:
统计量 | 平均数 | 众数 | 中位数 |
数值 | 19.2 | m | n |
根据以上信息,解答下列问题:
(1)上表中m、n的值分别为 , ;
(2)为调动积极性,该部门根据工人每天加工零件的个数制定了奖励标准,凡达到或超过这个标准的工人将获得奖励.如果想让60%左右的工人能获奖,应根据 来确定奖励标准比较合适(填“平均数”、“众数”或“中位数”);
(3)该部门规定:每天加工零件的个数达到或超过21个的工人为生产能手若该部门有300名工人,试估计该部门生产能手的人数;
(4)现决定从小王、小张、小李、小刘中选两人参加业务能手比赛,直接写出恰好选中小张、小李两人的概率.
![]()