题目内容
实数x、y、z、w满足x≥y≥z≥w≥0,且5x+4y+3z+6w=100.求x+y+z+w的最大值和最小值
.
一艘观光游船从港口A处以北偏东60°的方向出港观光,航行80海里至 C处时发生了侧翻沉船事故,立即发出了求救信号.一艘在港口正东方向B处的海警船接到求救信号,测得事故船在它的北偏东37°方向。
(1)求海警船距离事故船C的距离BC.
(2)若海警船以40海里/小时的速度前往救援,求海警船到达事故船C处大约所需的时间.(温馨提示:sin 53°≈0.8,cos 53°≈0.6)
正方形ABCD中,点P从点C出发沿着正方形的边依次经过点D,A向终点B运动,运动的路程为x(cm),△PBC的面积为y(),y随x变化的图象可能是( )
如图,正方形的边长为2,以为圆心、为半径作弧交于点,设弧与边、围成的阴影部分面积为;然后以为对角线作正方形,又以为圆心、为半径作弧交于点,设弧与边、围成的阴影部分面积为;…,按此规律继续作下去,设弧与边、围成的阴影部分面积为.则:(1)= ;(2)= .
如图,二次函数y=-x2+bx+c的图像经过点A(4,0)B(-4,-4),且与y轴交于点C.
(1)求此二次函数的解析式;
(2)证明:∠BAO=∠CAO(其中O是原点);
(3)若P是线段AB上的一个动点(不与A、B重合),过P作y轴的平行线,分别交此二次函数图像及x轴于Q、H两点,试问:是否存在这样的点 P,使PH=2QH?若存在,请求出点P的坐标;若不存在,请说明理由.
一个四位数,其各位上的四个数字的平方和等于个位、千位数字乘积的2倍与十位、百位数字乘积的2倍之和,且个位与十位数字相同,符合上述条件的四位数共有 个。
已知关于x的分式方程有增根,则a= 。
根据要求,解答下列问题:
(1)已知直线l1的函数表达式为,直接写出:①过原点且与l1垂直的直线l2的函数表达式;②过点(1,0)且与l1垂直的直线l2的函数表达式;
(2)如图,过点(1,0)的直线l4向上的方向与x轴的正方向所成的角为600,①求直线l4的函数表达式;②把直线l4绕点(1,0)按逆时针方向旋转900得到的直线l5,求直线l5的函数表达式;
(3)分别观察(1)(2)中的两个函数表达式,请猜想:当两直线垂直时,它们的函数表达式中自变量的系数之间有何关系?请根据猜想结论直接写出过点(1,0)且与直线垂直的直线l6的函数表达式。
若关于x的一元二次方程有实数根x1,x2,且x1≠x2,有下列结论:
①x1=1,x2=2; ②;
③二次函数y=的图象与x轴交点的坐标为(1,0)和(2,0)。
其中,正确结论的个数是【 】
A.0 B.1 C.2 D.3