题目内容

如图所示,∠B=20°,∠D=40°,∠BCD=2∠A,求∠A的度数.
考点:三角形的外角性质,三角形内角和定理
专题:
分析:连接AC并延长,根据三角形外角的性质可得∠B+∠BAE=∠BCE,∠D+∠DAC=∠DCE,再把两式相加即可得出结论.
解答:解:连接AC并延长,
∵∠BCE是△ABC的外角,∠DCE是△ACD的外角,
∴∠B+∠BAE=∠BCE①,∠D+∠DAC=∠DCE②,
①+②得,∠B+∠C+∠BAD=∠BCD,
∵∠B=20°,∠D=40°,∠BCD=2∠A,
∴20°+40°=∠A,即∠A=60°.
点评:本题考查是三角形外角的性质,熟知三角形的一个外角等于和它不相邻的两个内角的和是解答此题的关键.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网