题目内容
【题目】如图,
是正三角形
内的一点,且
,
,
.若将
绕点
逆时针旋转60°后,得到
,则
________.
![]()
【答案】150°
【解析】
根据旋转的性质得到∠PAP′=60°,PA=P′A=6,P′B=PC=10,利用等边三角形的判定方法得到△PAP′为等边三角形,再根据等边三角形的性质有PP′=PA=6,∠P′PA=60°,由于PP′2+PB2=P′B2,根据勾股定理的逆定理得到△BPP′为直角三角形,且∠BPP′=90°,则∠APB=∠P′PA+∠BPP′=60°+90°=150°.
∵△PAC绕点A逆时针旋转60°后,得到△P′AB,
∴∠PAP′=60°,PA=P′A=6,P′B=PC=10,
∴△PAP′为等边三角形,
∴PP′=PA=6,∠P′PA=60°,
在△BPP′中,P′B=10,PB=8,PP′=6,
∵62+82=102,
∴PP′2+PB2=P′B2,
∴△BPP′为直角三角形,且∠BPP′=90°,
∴∠APB=∠P′PA+∠BPP′=60°+90°=150°.
故答案为:150°
练习册系列答案
相关题目