题目内容

如图,在△ABC中,∠C=90°, AD是∠BAC的平分线,O是AB上一点, 以 OA为半径的⊙O经过点D。

(1)求证: BC是⊙O切线;

(2)若BD=5, DC=3, 求AC的长。

(1)证明见解析;(2)6.

【解析】

试题分析:(1)要证BC是⊙O的切线,只要连接OD,再证OD⊥BC即可.

(2)过点D作DE⊥AB,根据角平分线的性质可知CD=DE=3,由勾股定理得到BE的长,再通过证明△BDE∽△BAC,根据相似三角形的性质得出AC的长.

试题解析:(1)证明:连接OD;

∵AD是∠BAC的平分线,

∴∠1=∠3.

∵OA=OD,

∴∠1=∠2.

∴∠2=∠3.

∴OD∥AC.

∴∠ODB=∠ACB=90°.

∴OD⊥BC.

∴BC是⊙O切线.

(2)【解析】
过点D作DE⊥AB,

∵AD是∠BAC的平分线,

∴CD=DE=3.

在Rt△BDE中,∠BED=90°,

由勾股定理得:BE=

∵∠BED=∠ACB=90°,∠B=∠B,

∴△BDE∽△BAC.

∴AC=6.

考点:切线的判定.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网