题目内容

将长方形纸片ABCD沿过点B的直线折叠,使点A落在BC边上的点F处,折痕为BE(如图③);再沿过点E的直线折叠,使点D落在BE上的点处D′,折痕为EG(如图④);再展平纸片(如图⑤),则图⑤中∠α=________.

22.5°
分析:利用折叠的性质,可得∠AEB=45°,∠BEG=DEG,四边形ABFE是正方形,又由平角的定义即可求得∠DEG的度数,继而求得∠α的值.
解答:根据题意得:
如图③:四边形ABFE是正方形,
∴∠AEB=∠FEB=45°,
如图⑤:∵EG是折痕,
∴∠BEG=DEG,
∵∠AEB=45°,∠AEB+∠BEG+∠DEG=180°,
∴∠DEG=67.5°,
∴∠α=90°-∠DEG=22.5°.
故答案为:22.5°.
点评:此题考查了折叠的性质,正方形的性质以及角的和差关系.题目难度不大,解题的关键是数形结合思想的应用.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网