题目内容
用火柴棒摆“金鱼”:如图所示,摆第n个“金鱼”需用火柴棒的根数是

考点:规律型:图形的变化类
专题:规律型
分析:观察给出的3个例图,注意火柴棒根数的变化是图②的火柴棒比图①的多6根,图③的火柴棒比图②的多6根,本题规律就是:每增加一个金鱼就增加6根火柴棒.而图①的火柴棒的根数为2+6n.
解答:解:由图形可知:
第一个金鱼需用火柴棒的根数为:2+6=8;
第二个金鱼需用火柴棒的根数为:2+2×6=14;
第三个金鱼需用火柴棒的根数为:2+3×6=20;
…;
第n个金鱼需用火柴棒的根数为:2+n×6=2+6n.
故答案为:6n+2.
第一个金鱼需用火柴棒的根数为:2+6=8;
第二个金鱼需用火柴棒的根数为:2+2×6=14;
第三个金鱼需用火柴棒的根数为:2+3×6=20;
…;
第n个金鱼需用火柴棒的根数为:2+n×6=2+6n.
故答案为:6n+2.
点评:本题考查了规律型中的图形变化问题,本题的解答体现了由特殊到一般的数学方法(归纳法),先观察特例,找到火柴棒根数的变化规律,然后猜想第n条小鱼所需要的火柴棒的根数.
练习册系列答案
相关题目