题目内容

13.如图,四边形MNPQ中NP∥AQ,NP=2,AN=3,∠Q=60°.正方形ABCD的边长为1,它的一边AD在MN上,且顶点A与M重合.现将正方形ABCD在四边形的外面沿边MN、NP、PQ进行翻滚,翻滚到有一个顶点与Q重合即停止滚动,求正方形在整个翻滚过程中点A所经过的路线与四边形MNPQ的三边MN、NP、PQ所围成图形的面积S=$\frac{7}{3}$π+2.

分析 先根据点A绕点D翻滚,然后绕点C翻滚,然后绕点B翻滚,半径分别为1、2、1,翻转角分别为90°、90°、150°,据此画出图形.再结合总结的翻转角度和翻转半径,求出圆弧与梯形的边长围成的扇形的面积即可.

解答 解:如图:
∵点A绕点D翻滚,然后绕点C翻滚,然后绕点B翻滚,半径分别为1、$\sqrt{2}$、1,翻转角分别为90°、90°、150°,
∴S=2×$\frac{90×1×π}{360}$+2×$\frac{90π×(\sqrt{2})^{2}}{360}$+2×$\frac{150π×1}{360}$+4×$\frac{1}{2}$×12
=$\frac{π}{2}$+π+$\frac{5}{6}$π+2
=$\frac{7}{3}$π+2.
故答案为:$\frac{7}{3}$π+2.

点评 本题考查了扇形面积的计算、等腰梯形的性质、旋转的性质,作出图形并熟悉扇形面积是解题的关键.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网