题目内容
已知关于x的方程x2﹣x+k=0有两个不相等的实数根.
(1)求k的取值范围;
(2)化简:.
关于x的一元二次方程x2﹣2x=k有两个实数根,则k的取值范围是( )
A.k>l B.k<1 C.k≥﹣l D.k≤﹣1
在同一时刻两根木竿在太阳光下的影子如图所示,其中木竿AB=2m,它的影子BC=1.6m,木竿PQ的影子有一部分落在了墙上,PM=1.2m,MN=0.8m,则木竿PQ的长度为 m.
如图,防洪大堤的横断面是梯形,背水坡AB的坡比i=1:(指坡面的铅直高度与水平宽度的比),且AB=20m.身高为1.7m的小明站在大堤A点,测得髙压电线杆顶端点D的仰角为30°.已知地面CB宽30m,求髙压电线杆CD的髙度(结果保留三个有效数字,≈1.732).
已知⊙O的半径为3cm,圆心O到直线l的距离是4cm,则直线l与⊙O的位置关系是 .
在等式中,f2≠2F,则f1= (用F、f2的式子表示)
下列计算正确的是( )
A.a2+a2=a4 B.(a2)3=a5 C.2a﹣a=2 D.(ab)2=a2b2
如图,在Rt△ABC中,∠C=90°,∠B=30°,BC=6,以点C为圆心,以3的长为半径作圆,则⊙C与AB的位置关系是 .
如图所示,抛物线y=ax2+bx+3与x轴交于点A、B两点(A在B的左侧)与y轴交于C点,且OA:OC=1:3,S△ABC=6.
(1)求抛物线的函数关系式;
(2)抛物线上是否存在一点D(点C除外),使S△ABD=S△ABC?若存在,求出D点坐标;若不存在,说明理由.
(3)抛物线上是否存在一点E(点B除外),使S△ACE=S△ABC?若存在,求出E点坐标;若不存在,说明理由.