题目内容
【题目】如图,已知等边△ABC,CD⊥AB于D,AF⊥AC,E为线段CD上一点,且CE=AF,连接BE,BF,EG⊥BF于G,连接DG.
(1)求证:BE=BF;
(2)试说明DG与AF的位置关系和数量关系.
![]()
【答案】(1)见解析;(2)AF=2GD,AF∥DG.
【解析】
(1)由等边三角形的性质可得AB=AC=BC,∠BAC=∠ACB=∠ABC=60°,BD=AD,∠BCD=30°,由“SAS”可证△ABF≌△CBE,可得BF=BE;
(2)通过证明△BEF是等边三角形,可得BG=GF,由三角形中位线定理可得AF=2GD,AF∥DG.
证明:(1)∵△ABC是等边三角形
∴AB=AC=BC,∠BAC=∠ACB=∠ABC=60°
∵CD⊥AB,AC=BC
∴BD=AD,∠BCD=30°,
∵AF⊥AC
∴∠FAC=90°
∴∠FAB=∠FAC﹣∠BAC=30°
∴∠FAB=∠ECB,且AB=BC,AF=CE
∴△ABF≌△CBE(SAS)
∴BF=BE
(2)AF=2GD,AF∥DG
理由如下:连接EF,
![]()
∵△ABF≌△CBE
∴∠ABF=∠CBE,
∵∠ABE+∠EBC=60°
∴∠ABE+∠ABF=60°,且BE=BF
∴△BEF是等边三角形,且GE⊥BF
∴BG=FG,且BD=AD
∴AF=2GD,AF∥DG
练习册系列答案
相关题目