题目内容

20.解不等式组$\left\{\begin{array}{l}{-2x<6①}\\{3(x+1)≤2x+5②}\end{array}\right.$,并将解集在数轴上表示出来.

分析 分别求出各不等式的解集,再求出其公共解集并在数轴上表示出来即可.

解答 解:$\left\{\begin{array}{l}{-2x<6①}\\{3(x+1)≤2x+5②}\end{array}\right.$,
由①得,x>-3,
由②得,x≤2,
故此不等式组的解集为:-3<x≤2.
在数轴上表示为:

点评 本题考查的是解一元一次不等式组,熟知“同大取较大,同小取较小,小大大小中间找,大大小小解不了”的原则是解答此题的关键.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网