ÌâÄ¿ÄÚÈÝ
5£®Èçͼ£¬ÒÑÖª¶¯µãP´ÓÔµãO³ö·¢£¬ÑØÊýÖáµÄ¸º·½ÏòÒÔÿÃë1¸öµ¥Î»³¤¶ÈµÄËÙ¶ÈÔ˶¯£¬¶¯µãQ´ÓÔµãO³ö·¢£¬ÑØÊýÖáµÄÕý·½ÐÎÒÔÿÃë2¸öµ¥Î»³¤¶ÈµÄËÙ¶ÈÔ˶¯£¬Ô˶¯µÄʱ¼äΪt£¨Ã룩£®£¨1£©µ±t=2ʱ£¬ÇóPQµÄ³¤£¬ÈôµãAÊÇÏß¶ÎPQµÄÖе㣬ÔòµãA±íʾµÄÊýÊǶàÉÙ£¿
£¨2£©µ±t=3ʱ£¬ÇóPQµÄ³¤£¬ÈôµãAÊÇÏß¶ÎPQµÄÖе㣬ÔòµãA±íʾµÄÊýÊǶàÉÙ£¿
£¨3£©µ±t=nʱ£¬ÇóPQµÄ³¤£¬ÈôµãAÊÇÏß¶ÎPQµÄÖе㣬ÔòµãA±íʾµÄÊýÊǶàÉÙ£¿£¨Óú¬nµÄ´úÊýʽ±íʾ£©
·ÖÎö £¨1£©¸ù¾ÝµãPÔ˶¯ËٶȺ͵ãQÔ˶¯ËÙ¶È£¬¼ÆËã³öÁ½¸öµãÔ˶¯µÄµ¥Î»³¤¶È£¬¼´¿É½â´ð£»
£¨2£©¸ù¾ÝµãPÔ˶¯ËٶȺ͵ãQÔ˶¯ËÙ¶È£¬¼ÆËã³öÁ½¸öµãÔ˶¯µÄµ¥Î»³¤¶È£¬¼´¿É½â´ð£»
£¨3£©¸ù¾ÝµãPÔ˶¯ËٶȺ͵ãQÔ˶¯ËÙ¶È£¬¼ÆËã³öÁ½¸öµãÔ˶¯µÄµ¥Î»³¤¶È£¬¼´¿É½â´ð£®
½â´ð ½â£º£¨1£©µ±t=2ʱ£¬¶¯µãP´ÓÔµãO³ö·¢£¬ÑØÊýÖáµÄ¸º·½ÏòÔ˶¯2¸öµ¥Î»³¤¶È£¬¶¯µãQ´ÓÔµãO³ö·¢£¬ÑØÊýÖáµÄÕý·½ÏòÔ˶¯4¸öµ¥Î»³¤¶È£¬ÔòPQ=2+4=6£¬
ÈôµãAÊÇÏß¶ÎPQµÄÖе㣬ÔòµãA±íʾµÄÊýÊÇ£º£¨-2+4£©¡Â2=1£»
£¨2£©µ±t=3ʱ£¬¶¯µãP´ÓÔµãO³ö·¢£¬ÑØÊýÖáµÄ¸º·½ÏòÔ˶¯3¸öµ¥Î»³¤¶È£¬¶¯µãQ´ÓÔµãO³ö·¢£¬ÑØÊýÖáµÄÕý·½ÏòÔ˶¯6¸öµ¥Î»³¤¶È£¬ÔòPQ=3+6=9£¬
ÈôµãAÊÇÏß¶ÎPQµÄÖе㣬ÔòµãA±íʾµÄÊýÊÇ£º£¨-3+6£©¡Â2=1.5£»
£¨3£©µ±t=nʱ£¬¶¯µãP´ÓÔµãO³ö·¢£¬ÑØÊýÖáµÄ¸º·½ÏòÔ˶¯n¸öµ¥Î»³¤¶È£¬¶¯µãQ´ÓÔµãO³ö·¢£¬ÑØÊýÖáµÄÕý·½ÏòÔ˶¯2n¸öµ¥Î»³¤¶È£¬ÔòPQ=n+2n=3n£¬
ÈôµãAÊÇÏß¶ÎPQµÄÖе㣬ÔòµãA±íʾµÄÊýÊÇ£º£¨-n+2n£©¡Â2=$\frac{n}{2}$£®
µãÆÀ ±¾Ì⿼²éÁËÊýÖᣬ½â¾ö±¾ÌâµÄ¹Ø¼üÊǼÆËã³öÁ½¸öµãÔ˶¯µÄµ¥Î»³¤¶È£®