题目内容

16.如图,△ABC是等边三角形,AB=2,D是边BC的中点.点P从点A出发,沿AB-BD以每秒1个单位长度的速度向终点D运动.同时点Q从点C出发,沿CA-AC以每秒1个单位长度的速度运动.当点P停止运动时,点Q也随之停止运动.设点P的运动时间为t(秒).
(1)求线段PB的长(用含t的代数式).
(2)当△PQD是等边三角形时,求出t的值.

分析 (1)根据当0≤t≤2和2≤t≤3时两种情况进行解答即可;
(2)根据等边三角形的性质和AAS证明△BPD与△CDQ全等解答即可.

解答 解:(1)∵△ABC是等边三角形,AB=2,
∴当0≤t≤2时,BP=2-t;
当2≤t≤3时,BP=t-2;
(2)∵△PQD是等边三角形,∴∠PDQ=60°,
∴∠PDB+∠CDQ=120°,
∵△ABC是等边三角形,
∴∠B=∠C=60°,
∴∠PDB+∠BPD=120°,
∴∠BPD=∠CDQ,
∵BD=CD,
在△BPD与△CDQ中,$\left\{\begin{array}{l}{∠BPD=∠CDQ}&{\;}\\{∠B=∠C}&{\;}\\{BD=DC}&{\;}\end{array}\right.$,
∴△BPD≌△CDQ(AAS),
∴BP=CQ,
∴2-t=t,
∴t=1.

点评 本题考查了等边三角形的判定和性质、全等三角形的判定与性质;熟练掌握等边三角形的性质,证明三角形全等是解决问题的关键.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网