题目内容
(1)已知1+
|
| 3 |
| 2 |
1+
|
| 7 |
| 6 |
1+
|
| 13 |
| 12 |
1+
|
1+
|
| n2+n+1 |
| n(n+1) |
(2)s=
1+
|
1+
|
1+
|
1+
|
求不超过S的最大整数[s].
分析:(1)观察几道算式可知,结果的分母为二次根式中两个分母的积,分子比分母大1,由此得出一般规律;
(2)将一般规律的结果变形,即
=1+
-
,再将n的值代入寻找抵消规律.
(2)将一般规律的结果变形,即
| n2+n+1 |
| n(n+1) |
| 1 |
| n |
| 1 |
| n+1 |
解答:解:(1)猜想:
=
.
证明:
=
=
=
;
(2)∵
=1+
-
,
∴s=1+1-
+1+
-
+1+
-
+…+1+
-
=2005+1-
=2005
,
∴[s]=2005.
1+
|
| n2+n+1 |
| n(n+1) |
证明:
1+
|
|
| ||
| n(n+1) |
| n2+n+1 |
| n(n+1) |
(2)∵
| n2+n+1 |
| n(n+1) |
| 1 |
| n |
| 1 |
| n+1 |
∴s=1+1-
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 3 |
| 1 |
| 3 |
| 1 |
| 4 |
| 1 |
| 2005 |
| 1 |
| 2006 |
| 1 |
| 2006 |
| 2005 |
| 2006 |
∴[s]=2005.
点评:本题考查了二次根式的化简求值.关键是根据算式发现一般规律,运用一般规律代值计算,寻找算式的抵消规律.
练习册系列答案
相关题目