题目内容
【题目】如图,O为菱形ABCD对角线的交点,M是射线CA上的一个动点(点M与点C、O、A都不重合),过点A、C分别向直线BM作垂线段,垂足分别为E、F,连接OE,OF.
![]()
![]()
(1)①依据题意补全图形;
②猜想OE与OF的数量关系为_________________.
(2)小东通过观察、实验发现点M在射线CA上运动时,(1)中的猜想始终成立.
小东把这个发现与同学们进行交流,通过讨论,形成了证明(1)中猜想的几种想法:
想法1:由已知条件和菱形对角线互相平分,可以构造与△OAE全等的三角形,从而得到相等的线段,再依据直角三角形斜边中线的性质,即可证明猜想;
想法2:由已知条件和菱形对角线互相垂直,能找到两组共斜边的直角三角形,例如其中的一组△OAB和△EAB,再依据直角三角形斜边中线的性质,菱形四边相等,可以构造一对以OE和OF为对应边的全等三角形,即可证明猜想.
……
请你参考上面的想法,帮助小东证明(1)中的猜想(一种方法即可).
(3)当∠ADC=120°时,请直接写出线段CF,AE,EF之间的数量关系是_________________.
【答案】(1)①见解析;②OE=OF;(2)见解析;(3)EF=
(CF+AE)
【解析】
(1)①由题意直接补全图形,②结论是OE=OF,
(2)方法1、先判断出△AOE≌△CON,再利用直角三角形的性质即可得出结论;
方法2、利用直角三角形斜边的中线等于斜边的一半,即可得出结论;
(3)先判断出四边形OPBQ是菱形,再判断出∠EOF=∠POQ=120°,再借助直角三角形的性质即可得出结论.
解:(1)①补全的图形如图所示.
![]()
②OE=OF.
(2)法一:
证明:如图1,
![]()
延长EO交FC的延长线于点N,
∵四边形ABCD是菱形,
∴AO=CO.
∵AE⊥BM,CF⊥BM,
∴AE∥CF.
∴∠AEO=∠CNO.
又∵∠AOE=∠CON,
∴△AOE≌△CON.
∴OE=ON=
.
∵Rt△EFN中,O是斜边EN的中点,
∴OF=![]()
∴OE=OF.
法二:
证明:如图2,
![]()
取线段AB,BC的中点P,Q,连接OP,PE,OQ,QF,
∵四边形ABCD是菱形,
∴AB=BC,AC⊥BD.
∵P,Q是AB,BC的中点,
∴OP=PB=
,OQ=QB=![]()
∴OP=OQ.
同理,PE=QF.
∵OP=PB,PE=PB,
∴∠OPA=2∠OBA,∠EPA=2∠EBA.
∴∠OPA+∠EPA=2∠OBA+2∠EBA,即∠OPE=2∠OBE.
同理,∠OQF=2∠OCF.
∵AC⊥BD,CF⊥BM,
∴∠OBE+∠OMB=∠OCF+∠OMB=90°.
∴∠OBE=∠OCF.
∴∠OPE=∠OQF.
∴△OPE≌△OQF.
∴OE=OF.
(3)如图1,
![]()
由(2)方法一、得出△AOE≌△CON,
∴AE=CN,OE=ON,
由(2)知,OE=OF,∴OF=ON,
∵四边形ABCD是菱形,
∴∠ABC=∠ADC=120°,
∴∠ABE+∠CBF=60°,
∵∠AOB=∠AEB=90°,
∴点A、E、B、O共圆,
∴∠AOE=∠ABE,
同理:∠COF=∠CBF,
∴∠NOF=∠NOC+∠COF=∠AOE+∠CBF=∠ABE+∠CBF=60°,
∵OF=ON,
∴△FON是等边三角形,
∴∠ONF=60°,
∴∠FEN=30°,
在Rt△EFN中,∠FEN=30°,
∴EF=
(CF+CN)=
(CF+AE).
故答案为EF=
(CF+AE)