题目内容
如图,已知图中⊙O的半径为1,∠AOB=120°,则阴影部分的面积为
- A.
-
- B.
-
- C.
-
- D.
-
C
分析:分别求出△AOB及扇形AOB的面积,继而利用差值法可得出阴影部分的面积.
解答:过点O作OC⊥AB于点C,

∵∠AOB=120°,OA=OB,
∴∠OAC=30°,
在Rt△OAC中,OC=
OA=
,AC=
OC=
,
则S△AOB=
AB×OC=
,S扇形AOB=
=
,
故S阴影=S扇形AOB-S△AOB=
-
.
故选C.
点评:本题考查了扇形的面积计算,解答本题的关键是仔细观察图形,利用差值法求出不规则图形的面积.
分析:分别求出△AOB及扇形AOB的面积,继而利用差值法可得出阴影部分的面积.
解答:过点O作OC⊥AB于点C,
∵∠AOB=120°,OA=OB,
∴∠OAC=30°,
在Rt△OAC中,OC=
则S△AOB=
故S阴影=S扇形AOB-S△AOB=
故选C.
点评:本题考查了扇形的面积计算,解答本题的关键是仔细观察图形,利用差值法求出不规则图形的面积.
练习册系列答案
相关题目