题目内容
19.(1)函数y=kx+b中的y随x的增大而减小.
(2)求出k、b的值.
(3)求该直线与两坐标轴围成的△AOB的面积.
分析 (1)根据图象过第二、三、四象限,可得出y随x的增大而减小;
(2)把A、C两点坐标代入一次函数y=kx+b即可求出k、b的值,进而得出k、b的值;
(3)令x=0,得出B点坐标,利用三角形的面积公式即可得出结论.
解答 解:(1)∵图象过第二、三、四象限,
∴k<0,
∴y随x的增大而减小,
故答案为减小;
(2)把A、C两点坐标代入一次函数y=kx+b,
$\left\{\begin{array}{l}{-2k+b=0}\\{-k+b=-2}\end{array}\right.$,
解得$\left\{\begin{array}{l}{k=-2}\\{b=-4}\end{array}\right.$,
∴k、b的值为-2,-4;
(3)令x=0,得B点坐标(0,-4),
∴S△AOB=$\frac{1}{2}$OA•OB=$\frac{1}{2}$×2×4=4.
点评 本题考查了一次函数图象上点的特征,以及待定系数法求一次函数的解析式,先根据一次函数的图象得出A、B、C三点的坐标是解答此题的关键.
练习册系列答案
相关题目
9.在时刻8:30时,时钟上的时针与分针之间的所成的夹角是( )
| A. | 60° | B. | 70° | C. | 75° | D. | 85° |
7.点(-1,-1)关于原点对称的点的坐标是( )
| A. | (-1,1) | B. | (1,1) | C. | (1,-1) | D. | (0,0) |
4.江津中学七年级准备开展“阳光体育 ”活动,为了丰富同学们的体锻内容,体育委员小灵到体育用品商店购买羽毛球拍和乒乓球拍,若购买1副羽毛球拍和1副乒乓球拍共需50元,小强一共用320元购买了6副同样的羽毛球拍和10副同样的乒乓球拍.若设每副羽毛球拍为x元,每副乒乓球拍为y元,列二元一次方程组得( )
| A. | $\left\{\begin{array}{l}{x+y=50}\\{10(x+y)=320}\end{array}\right.$ | B. | $\left\{\begin{array}{l}{x+y=50}\\{6x+y=320}\end{array}\right.$ | ||
| C. | $\left\{\begin{array}{l}{x+y=50}\\{6x+10y=320}\end{array}\right.$ | D. | $\left\{\begin{array}{l}{x+y=50}\\{10x+6y=320}\end{array}\right.$ |
8.在坐标平面上,点P在x轴的负半轴,且到原点的距离是6,则点P的坐标是( )
| A. | (0,6) | B. | (0.-6) | C. | (6,0) | D. | (-6,0) |