题目内容

如图,在△ABC中,∠ABC=60°,∠C=45°,AD是BC边上的高,∠ABC的角平分线BE交AD于点F,则图中共有等腰三角形(  )
A、2个B、3个C、4个D、5个
考点:等腰三角形的判定
专题:
分析:根据在△ABC中,∠ABC=60°,∠ACB=45°,利用三角形内角和定理求得∠BAC=75°,然后可得等腰三角形.
解答:解:(1)∵∠ABC=60°,∠ACB=45°,AD是高,
∴∠DAC=45°,
∴CD=AD,
∴△ADC为等腰直角三角形,
∵∠ABC=60°,BE是∠ABC平分线,∴∠ABE=∠CBE=30°,
在△ABD中,∠BAD=180°-∠ABD-∠ADB=180°-60°-90°=30°,
∴∠ABF=∠BAD=30°,
∴AF=BF即△ABF是等腰三角形,
在△ABC中,∠BAC=180°-∠ABC-∠ACB=180°-60°-45°=75°,
∵∠AEB=∠CBE+∠ACB=30°+45°=75°,
∴∠BAE=∠BEA,
∴AB=EB即△ABE是等腰三角形,
∴等腰三角形有△ACD,△ABF,△ABE;
故选B.
点评:本题考查了三角形的内角和定理以及三角形的高、角平分线,等腰三角形的判定、等边三角形的判定,是基础知识要熟练掌握.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网