题目内容

20.已知,如图,在△ABC中,∠ACB=90°,AE是角平分线,CD是高,AE、CD相交于点F,求证:∠CEF=∠CFE.

分析 先根据在△ABC中,∠ACB=90°,CD是高可得出∠ACD+∠CAB=90°,∠B+∠CAB=90°,故∠ACD=∠B,再根据AE是角平分线可知∠CAE=∠BAE,进而可得出结论.

解答 证明:∵∠ACB=90°,CD是高,
∴∠ACD+∠CAB=90°,∠B+∠CAB=90°,
∴∠ACD=∠B;
∵AE是角平分线,
∴∠CAE=∠BAE;
∵∠CFE=∠CAE+∠ACD,∠CEF=∠BAE+∠B,
∴∠CFE=∠CEF.

点评 本题考查的是三角形内角和定理,熟知三角形内角和是180°是解答此题的关键.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网