题目内容
以下是小辰同学阅读的一份材料和思考:
五个边长为1的小正方形如图①放置,用两条线段把它们分割成三部分(如图②),移动其中的两部分,与未移动的部分恰好拼接成一个无空隙无重叠的新正方形(如图③).

小辰阅读后发现,拼接前后图形的面积相等,若设新的正方形的边长为x(x>0),可得x2=5,x=
.由此可知新正方形边长等于两个小正方形组成的矩形的对角线长.
参考上面的材料和小辰的思考方法,解决问题:
五个边长为1的小正方形(如图④放置),用两条线段把它们分割成四部分,移动其中的两部分,与未移动的部分恰好拼接成一个无空隙无重叠的矩形,且所得矩形的邻边之比为1:2.
具体要求如下:
(1)设拼接后的长方形的长为a,宽为b,则a的长度为 ;
(2)在图④中,画出符合题意的两条分割线(只要画出一种即可);
(3)在图⑤中,画出拼接后符合题意的长方形(只要画出一种即可)

五个边长为1的小正方形如图①放置,用两条线段把它们分割成三部分(如图②),移动其中的两部分,与未移动的部分恰好拼接成一个无空隙无重叠的新正方形(如图③).
小辰阅读后发现,拼接前后图形的面积相等,若设新的正方形的边长为x(x>0),可得x2=5,x=
| 5 |
参考上面的材料和小辰的思考方法,解决问题:
五个边长为1的小正方形(如图④放置),用两条线段把它们分割成四部分,移动其中的两部分,与未移动的部分恰好拼接成一个无空隙无重叠的矩形,且所得矩形的邻边之比为1:2.
具体要求如下:
(1)设拼接后的长方形的长为a,宽为b,则a的长度为
(2)在图④中,画出符合题意的两条分割线(只要画出一种即可);
(3)在图⑤中,画出拼接后符合题意的长方形(只要画出一种即可)
考点:作图—应用与设计作图
专题:
分析:(1)利用勾股定理计算即可;
(2)根据5个小正方形的面积的和等于拼成的正方形的面积,根据勾股定理确定截线的长度,即可确定分法;
(3)方法同(2).
(2)根据5个小正方形的面积的和等于拼成的正方形的面积,根据勾股定理确定截线的长度,即可确定分法;
(3)方法同(2).
解答:解:(1)a=
=
,
故答案为:
;
(2)如图所示(画出其中一种情况即可)

(3)如图所示(画出其中一种情况即可)

| 12+32 |
| 10 |
故答案为:
| 10 |
(2)如图所示(画出其中一种情况即可)
(3)如图所示(画出其中一种情况即可)
点评:本题主要考查了图形的设计以及勾股定理的运用,正确理解小正方形的面积的和等于拼成的正方形的面积是解题的关键.
练习册系列答案
相关题目