题目内容
16.| A. | 5cm | B. | 10cm | C. | 5cm或10cm | D. | 不存在 |
分析 本题要分情况讨论:①Rt△APQ≌Rt△CBA,此时AP=BC=5cm,可据此求出P点的位置;②Rt△QAP≌Rt△BCA,此时AP=AC,P、C重合.
解答 解:∵PQ=AB,
∴根据三角形全等的判定方法HL可知,
①当P运动到AP=BC时,△ABC≌△QPA,即AP=BC=5cm;
②当P运动到与C点重合时,△QAP≌△BCA,即AP=AC=10cm,
故选:C.
点评 本题考查三角形全等的判定方法和全等三角形的性质,判定两个三角形全等的一般方法有:SSS、SAS、ASA、HL.由于本题没有说明全等三角形的对应边和对应角,因此要分类讨论,以免漏解.
练习册系列答案
相关题目
11.某单位招聘员工,采取笔试与面试相结合的方式进行,两项成绩的原始分均为100分.前5名选手的得分如下:
根据规定,笔试成绩和面试成绩分别占总成绩的40%和60%.
(1)这5名选手笔试成绩的中位数是84分,众数是84分.
(2)现得知1号、2号、3号选手的综合成绩分别为88分、85.2分、81.6分,求出其余两名选手的综合成绩,并确定谁将被录取?
| 序号项目 | 1 | 2 | 3 | 4 | 5 |
| 笔试成绩/分 | 85 | 84 | 84 | 90 | 80 |
| 面试成绩/分 | 90 | 86 | 80 | 90 | 85 |
(1)这5名选手笔试成绩的中位数是84分,众数是84分.
(2)现得知1号、2号、3号选手的综合成绩分别为88分、85.2分、81.6分,求出其余两名选手的综合成绩,并确定谁将被录取?
8.
如图,在等腰三角形ABC中,∠ABC=120°,点P是底边AC上的一个动点,M、N分别是AB、BC的中点,若PM+PN的最小值为2,则△ABC的周长是( )
| A. | 2+$\sqrt{3}$ | B. | 4 | C. | 4+2$\sqrt{3}$ | D. | 12 |