题目内容
如图,在矩形ABCD中,AD=
AB,∠BAD的平分线交BC于点E,DH⊥AE于点H,连接BH并延长交CD于点F,连接DE交BF于点O,下列结论:
①∠AED=∠CED;②OE=OD;③BH=HF;④BC﹣CF=2HE;⑤AB=HF,
其中正确的有( )
![]()
A.2个 B.3个 C.4个 D.5个
C
【解析】∵在矩形ABCD中,AE平分∠BAD,∴∠BAE=∠DAE=45°,∴△ABE是等腰直角三角形,∴AE=
AB,∵AD=
AB,∴AE=AD,又∠ABE=∠AHD=90°∴△ABE≌△AHD(AAS),∴BE=DH,∴AB=BE=AH=HD,∴∠ADE=∠AED=
(180°﹣45°)=67.5°,
∴∠CED=180°﹣45°﹣67.5°=67.5°,∴∠AED=∠CED,故①正确;
∵∠AHB=
(180°﹣45°)=67.5°,∠OHE=∠AHB(对顶角相等),∴∠OHE=∠AED,
∴OE=OH,∵∠DOH=90°﹣67.5°=22.5°,∠ODH=67.5°﹣45°=22.5°,∴∠DOH=∠ODH,∴OH=OD,∴OE=OD=OH,故②正确;
∵∠EBH=90°﹣67.5°=22.5°,∴∠EBH=∠OHD,又BE=DH,∠AEB=∠HDF=45°
∴△BEH≌△HDF(ASA),∴BH=HF,HE=DF,故③正确;
由上述①、②、③可得CD=BE、DF=EH=CE,CF=CD-DF,∴BC-CF=(CD+HE)-(CD-HE)=2HE,所以④正确;
∵AB=AH,∠BAE=45°,∴△A
BH不是等边三角形,∴AB≠BH,∴即AB≠HF,故⑤错误;
综上所述,结论正确的是①②③④共4个.
故选C.
练习册系列答案
相关题目