题目内容
等边三角形的外接圆半径与它的内切圆半径之比是
- A.1
- B.

- C.2:1
- D.

C
分析:作出辅助线OD、OE,证明△AOD为直角三角形且∠OAD为30°,即可求出OD、OA的比.
解答:
解:如图,连接OD、OE;
因为AB、AC切圆O与E、D,
所以OE⊥AB,OD⊥AC,
又因为AO=AO,
EO=DO,
所以△AEO≌△ADO(HL),
故∠DAO=∠EAO;
又∵△ABC为等边三角形,
∴∠BAC=60°,
∴∠OAC=60°×
=30°,
∴OD:AO=1:2.
等边三角形的外接圆半径与它的内切圆半径之比是:2:1.
故选:C.
点评:此题主要考查了三角形的内心与外心,找到直角三角形,将三角形内切圆和三角形外接圆联系起来是解题的关键.
分析:作出辅助线OD、OE,证明△AOD为直角三角形且∠OAD为30°,即可求出OD、OA的比.
解答:
因为AB、AC切圆O与E、D,
所以OE⊥AB,OD⊥AC,
又因为AO=AO,
EO=DO,
所以△AEO≌△ADO(HL),
故∠DAO=∠EAO;
又∵△ABC为等边三角形,
∴∠BAC=60°,
∴∠OAC=60°×
∴OD:AO=1:2.
等边三角形的外接圆半径与它的内切圆半径之比是:2:1.
故选:C.
点评:此题主要考查了三角形的内心与外心,找到直角三角形,将三角形内切圆和三角形外接圆联系起来是解题的关键.
练习册系列答案
相关题目