题目内容

20.如图,在直角坐标系中,△OAB和△OCD是位似图形,O为位似中心,若A点的坐标为(1,1),B点的坐标为(2,1),C点的坐标为(3,3),那么点D的坐标是(  )
A.(4,2)B.(6,3)C.(8,4)D.(8,3)

分析 利用位似是特殊的相似,若两个图形△ABC和△A′B′C′以原点为位似中心,相似比是k,△ABC上一点的坐标是(x,y),则在△A′B′C′中,它的对应点的坐标是(kx,ky)或(-kx,ky),进而求出即可.

解答 解:∵A点的坐标为(1,1),C点的坐标为(3,3),
∴位似比k=3,
∵B点的坐标为(2,1),
∴点D的坐标是:(2×3,1×3  ),即(6,3).
故选:B.

点评 此题主要考查了位似变换的性质,正确理解位似与相似的关系,记忆关于原点位似的两个图形对应点坐标之间的关系是解题的关键.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网