题目内容

16.若一次函数y=kx+b(k≠0)的图象如图所示,点P(3,4)在函数图象上,则关于x的不等式kx+b≤4的解集是x≤3.

分析 先根据待定系数法求得一次函数解析式,再解关于x的一元一次不等式即可.

解答 解法1:∵直线y=kx+b(k≠0)的图象经过点P(3,4)和(0,-2),
∴$\left\{\begin{array}{l}{4=3k+b}\\{-2=b}\end{array}\right.$,
解得$\left\{\begin{array}{l}{k=2}\\{b=-2}\end{array}\right.$,
∴一次函数解析式为y=2x-2,
当y=2x-2≤4时,解得x≤3;
解法2:点P(3,4)在一次函数y=kx+b(k≠0)的图象上,则
当 kx+b≤4时,y≤4,
故关于x的不等式kx+b≤4的解集为点P及其左侧部分图象对应的横坐标的集合,
∵P的横坐标为3,
∴不等式kx+b≤4的解集为:x≤3.
故答案为:x≤3

点评 本题主要考查了一次函数与一元一次不等式的关系,解决此类试题时注意:一次函数与一元一次不等式的关系,从函数的角度看,就是寻求使一次函数y=kx+b的值大于(或小于)0的自变量x的取值范围;从函数图象的角度看,就是确定直线y=kx+b在x轴上(或下)方部分所有的点的横坐标所构成的集合.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网