题目内容

如图,AB是⊙O的直径,CD是⊙O的弦,AB,CD的延长线交于E,若AB=2DE,∠E=18°,∠C=
 
,∠AOC=
 
考点:圆周角定理
专题:
分析:根据AB=2DE得DE等于圆的半径,在△EDO和△CEO中,根据三角形的一个外角等于和它不相邻的两个内角的和求解.
解答:解:连接OD,
∵AB=2DE,
∴OD=DE,
∴∠E=∠EOD,
在△EDO中,∠ODC=∠E+∠EOD=36°,
∵OC=OD,
∴∠OCD=∠ODC=36°,
在△CEO中,∠AOC=∠E+∠OCD=18°+36°=54°.
故答案为:36°;54°.
点评:本题主要考查了三角形的外角的性质,三角形的外角等于与它不相邻的两个内角的和.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网