题目内容
7.①AD=DE ②DH=2$\sqrt{2}$EH ③△AEH∽△CFB ④HO=$\frac{1}{2}$AE
其中正确命题的序号是①③④(填上所有正确命题的序号)
分析 根据矩形的性质得到AD=BC=$\sqrt{2}$AB=$\sqrt{2}$CD,由DE平分∠ADC,得到△ADH是等腰直角三角形,△DEC是等腰直角三角形,得到DE=$\sqrt{2}$CD,得到等腰三角形求出∠AED=67.5°,∠AEB=180°-45°-67.5°=67.5°,得到①正确;设DH=1,则AH=DH=1,AD=DE=$\sqrt{2}$,求出HE=$\sqrt{2}$,得到2$\sqrt{2}$HE=$\sqrt{2}$≠1,故②错误;通过角的度数求出△AOH和△OEH是等腰三角形,从而得到④正确;由△AFH≌△CHE,根据全等三角形的性质得到∠AHF=∠HCE,根据等腰三角形的性质得到∠HAO=∠AHO,求得∠HAO=∠BCF即可证得△AEH∽△CFB,故③正确.
解答 解:在矩形ABCD中,AD=BC=$\sqrt{2}$AB=$\sqrt{2}$CD,
∵DE平分∠ADC,
∴∠ADE=∠CDE=45°,
∵AD⊥DE,
∴△ADH是等腰直角三角形,
∴AD=$\sqrt{2}$AB,
∴AH=AB=CD,
∵△DEC是等腰直角三角形,
∴DE=$\sqrt{2}$CD,
∴AD=DE,
∴∠AED=67.5°,
∴∠AEB=180°-45°-67.5°=67.5°,
∴∠AED=∠AEB,
∵AD∥BC,
∴∠DAE=∠AEB,
∴∠DAE=∠AED,
∴AD=DE,
故①正确;
设DH=1,
则AH=DH=1,AD=DE=$\sqrt{2}$,
∴HE=$\sqrt{2}$,
∴2$\sqrt{2}$HE=2$\sqrt{2}$≠1,
故②错误;
∵∠AEH=67.5°,
∴∠EAH=22.5°,
∵DH=CD,∠EDC=45°,
∴∠DHC=67.5°,
∴∠OHA=22.5°,
∴∠OAH=∠OHA,![]()
∴OA=OH,
∴∠AEH=∠OHE=67.5°,
∴OH=OE,
∴OH=$\frac{1}{2}$AE,
故④正确;
∵AH=DH,CD=CE,
在△AFH与△CHE中,
$\left\{\begin{array}{l}{∠AHF=∠HCE=22.5°}\\{∠FAH=∠HEC=45°}\\{AH=CE}\end{array}\right.$,
∴△AFH≌△CHE,
∴∠AHF=∠HCE,
∵AO=OH,
∴∠HAO=∠AHO,
∴∠HAO=∠BCF,∵∠B=∠AHE=90°,
∴△AEH∽△CFB,故③正确.
故答案为:①③④.
点评 本题考查了矩形的性质,全等三角形的判定与性质,角平分线的定义,等腰三角形的判定与性质,熟记各性质并仔细分析题目条件,根据相等的度数求出相等的角,从而得到三角形全等的条件或判断出等腰三角形是解题的关键,也是本题的难点.
①一条直角边和斜边上的高对应相等的两个直角三角形全等;
②有两条边相等的两个直角三角形全等;
③有一边相等的两个等边三角形全等;
④两边和其中一边的对角对应相等的两个三角形全等.
| A. | ①② | B. | ②④ | C. | ①③ | D. | ①③④ |
(1)根据上面多面体的模型,完成表格中的空格:
| 多面体 | 顶点数(V) | 面数(F) | 棱数(E) |
| 四面体 | 4 | 4 | 6 |
| 长方体 | 8 | 6 | 12 |
| 正八面体 | 6 | 8 | 12 |
(2)一个多面体的棱数比顶点数大10,且有12个面,则这个多面体的棱数是30;
(3)某个玻璃饰品的外形是简单的多面体,它的外表面是由三角形和八边形两种多边形拼接而成,每个顶点处都有3条棱,共有棱36条.若该多面体外表面三角形的个数比八边形的个数的2倍多2,求该多面体外表面三角形的个数.