题目内容

综合与探究

如图,在平面直角坐标系xOy中,抛物线W的函数表达式为y=﹣x2+2x+3,抛物线W与x轴交于A、B两点(点A在点B的右侧),与y轴交于点C,它的顶点为D,直线l经过A、C两点.

(1)求点A、B、C、D的坐标.

(2)将直线l向下平移m个单位,对应的直线为l′.

①若直线l′与x轴的正半轴交于点E,与y轴的正半轴交于点F,△AEF的面积为S,求S关于m的函数关系式,并写出自变量m的取值范围;

②求m的值为多少时,S的值最大?最大值为多少?

(3)若将抛物线W也向下平移m单位,再向右平移1个单位,使平移后得到的二次函数图象的顶点P落在△AOC的内部(不包括△AOC的边界),请直接写出m的取值范围.

(1)点D坐标为(1,4)(2)①S=﹣m2+m(0<m<3),②当m=时,S的值最大,最大值为(3)3<m<4 【解析】试题分析:(1)令y=0,求出A,B的横坐标,令x=0求出C的纵坐标,把二次函数解析式转化为顶点式即可得出D的坐标; (2)①利用待定系数法确定出直线l的解析式,根据平移得出l′的解析式,求出与坐标轴的交点E,F的坐标,得出AE,OF的长,最后用面积公式即可得出结论...
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网