题目内容

如图,将长方形OABC置于平面直角坐标系中,点A的坐标为(0,4),点C的坐标为(m,0)(m>0),点D(m,1)在BC上,将长方形OABC沿AD折叠压平,使点B落在坐标平面内,设点B的对应点为点E.

(1)当m=3时,点B的坐标为_________,点E的坐标为_________; 

(2)随着m的变化,试探索:点E能否恰好落在x轴上?若能,请求出m的值;若不能,请说明理由.

(1)(3,4),(0,1);(2)点E能恰好落在x轴上,理由见解析. 【解析】试题分析:(1)根据点A、点D、点C的坐标和矩形的性质可以得到点B和点E的坐标; (2)由折叠的性质求得线段DE和AE的长,然后利用勾股定理得到有关m的方程,求得m的值即可. 试题解析:(1)点B的坐标为(3,4), ∵AB=BD=3, ∴△ABD是等腰直角三角形, ∴∠BAD=45...
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网