题目内容

精英家教网如图,O是△ABC内任意一点,AD=
1
3
AO,BE=
1
3
BO,CF=
1
3
CO,则△ABC与△DEF的周长比为(  )
A、1:3B、3:2
C、3:1D、2:3
分析:根据已知可得到△ABC与△DEF相似,根据已知可求得其相似比,根据相似三角形的周长比等于相似比,从而也就得到答案了.
解答:解:∵AD=
1
3
AO,BE=
1
3
BO,CF=
1
3
CO
∴△ABC∽△DEF
∴相似比是OA:OD=3:2
∴△ABC与△DEF的周长比为3:2.
故选B.
点评:本题考查对相似三角形性质的理解,相似三角形周长的比等于相似比.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网