题目内容
(1)图中有几个三角形;
(2)求证:AB+AC>PB+PC.
分析:(1)直接找出图中的三角形即可,注意要不重不漏;
(2)利用三角形的三边关系可得AB+AD>BD,PD+CD>PC,再把两个式子相加进行变形即可.
(2)利用三角形的三边关系可得AB+AD>BD,PD+CD>PC,再把两个式子相加进行变形即可.
解答:(1)解:图中三角形有△ABC,△ABD,△BPC,△PDC,△BDC,共5个.
(2)证明:∵AB+AD>BD,PD+CD>PC,
∴AB+AD+PD+CD>BD+PC,
∴AB+AD+PD+CD>BP+PD+PC,
∴AB+AC>PB+PC.
(2)证明:∵AB+AD>BD,PD+CD>PC,
∴AB+AD+PD+CD>BD+PC,
∴AB+AD+PD+CD>BP+PD+PC,
∴AB+AC>PB+PC.
点评:此题主要考查了三角形的三边关系,关键是掌握三角形三边关系定理:三角形两边之和大于第三边.
练习册系列答案
相关题目
| 1 |
| 3 |
| 1 |
| 3 |
| 1 |
| 3 |
| A、1:3 | B、3:2 |
| C、3:1 | D、2:3 |