题目内容
1条直线把平面分成2部分,2条直线最多把平面分成4部分,那么3条直线最多把平面分成几部分?n条呢?
解:一条直线最多将平面分为2个部分;
二条直线最多将平面分为4个部分;
三条直线最多将平面分为7个部分;
四条直线最多将平面分为11个部分;
五条直线最多将平面分为16个部分;
5条直线最多将平面分成16个部分.
分析上面一组数据,我们不难发现二条直线分平面的4部分是在一条直线分平面的2部分的基础上增添了2部分;
三条直线分平面的7部分恰好是二条直线分平面的4部分的基础上增添了3部分;
类似地,四条直线分平面的11部分是在三条直线分平面的7部分的基础上增添了4部分
…
仿照此分析法可以得出,n条直线最多分平面的部分数为:
2+2+3+…+(n-1)+n=1+[1++2+3+…+(n-1)+n]=1+
=
(n2+n+2).
故3条直线最多把平面分成7部分,n条直线能把平面分成
(n2+n+2)部分.
分析:仔细分析题设中的数据,寻找数量间的相互关系,总结规律,进行求解.
点评:本题考查了直线射线与线段以及归纳推理的应用,是基础题.解题时要认真审题,仔细解答,注意寻找规律.
二条直线最多将平面分为4个部分;
三条直线最多将平面分为7个部分;
四条直线最多将平面分为11个部分;
五条直线最多将平面分为16个部分;
5条直线最多将平面分成16个部分.
分析上面一组数据,我们不难发现二条直线分平面的4部分是在一条直线分平面的2部分的基础上增添了2部分;
三条直线分平面的7部分恰好是二条直线分平面的4部分的基础上增添了3部分;
类似地,四条直线分平面的11部分是在三条直线分平面的7部分的基础上增添了4部分
…
仿照此分析法可以得出,n条直线最多分平面的部分数为:
2+2+3+…+(n-1)+n=1+[1++2+3+…+(n-1)+n]=1+
故3条直线最多把平面分成7部分,n条直线能把平面分成
分析:仔细分析题设中的数据,寻找数量间的相互关系,总结规律,进行求解.
点评:本题考查了直线射线与线段以及归纳推理的应用,是基础题.解题时要认真审题,仔细解答,注意寻找规律.
练习册系列答案
相关题目
为了探究n条直线能把平面最多分成几部分,我们从最简单的情形入手.
(1)一条直线把平面分成2部分;
(2)两条直线最多可把平面分成4部分;
(3)三条直线最多可把平面分成11部分…;
把上述探究的结果进行整理,列表分析:
(1)当直线条数为5时,把平面最多分成 部分,写成和的形式 ;
(2)当直线为10条时,把平面最多分成 部分;
(3)当直线为n条时,把平面最多分成 部分.(不必说明理由)
(1)一条直线把平面分成2部分;
(2)两条直线最多可把平面分成4部分;
(3)三条直线最多可把平面分成11部分…;
把上述探究的结果进行整理,列表分析:
| 直线条数 | 把平面分成部分数 | 写成和形式 |
| 1 | 2 | 1+1 |
| 2 | 4 | 1+1+2 |
| 3 | 7 | 1+1+2+3 |
| 4 | 11 | 1+1+2+3+4 |
| … | … | … |
(2)当直线为10条时,把平面最多分成
(3)当直线为n条时,把平面最多分成
为了探究n条直线能把平面最多分成几部分,我们从最简单的情形入手.
(1)一条直线把平面分成2部分;
(2)两条直线最多可把平面分成4部分;
(3)三条直线最多可把平面分成11部分…;
把上述探究的结果进行整理,列表分析:
| 直线条数 | 把平面分成部分数 | 写成和形式 |
| 1 | 2 | 1+1 |
| 2 | 4 | 1+1+2 |
| 3 | 7 | 1+1+2+3 |
| 4 | 11 | 1+1+2+3+4 |
| … | … | … |
(2)当直线为10条时,把平面最多分成______部分;
(3)当直线为n条时,把平面最多分成______部分.(不必说明理由)