题目内容
计算:
(1)
-|-3|+(
-1)0
(2)
(
+2)-
.
(1)
| 4 |
| 2 |
(2)
| a |
| a |
| ||
|
考点:二次根式的混合运算,零指数幂
专题:计算题
分析:(1)根据零指数幂的意义和绝对值的意义得到原式=2-3+1,然后进行加减运算;
(2)根据二次根式的性质和乘除法则得到原式=a+2
-
=a+2
-a,然后合并即可.
(2)根据二次根式的性质和乘除法则得到原式=a+2
| a |
a
| ||
|
| a |
解答:解:(1)原式=2-3+1=0;
(2)原式=a+2
-
=a+2
-a
=2
.
(2)原式=a+2
| a |
a
| ||
|
=a+2
| a |
=2
| a |
点评:本题考查了二次根式的混合运算:先把各二次根式化为最简二次根式,再进行二次根式的乘除运算,然后合并同类二次根式.也考查了零指数幂.
练习册系列答案
相关题目
下列命题:
(1)斜边和一条直角边对应相等的两个直角三角形全等.
(2)若三角形一个外角的平分线平行于第三边,则这个三角形是等腰三角形;
(3)三角形的外角必大于任一个内角;
(4)若直角三角形斜边上一点(除两个端点外)到直角顶点的距离是斜边的一半,则这个点必是斜边的中点.
其中是真命题的有( )
(1)斜边和一条直角边对应相等的两个直角三角形全等.
(2)若三角形一个外角的平分线平行于第三边,则这个三角形是等腰三角形;
(3)三角形的外角必大于任一个内角;
(4)若直角三角形斜边上一点(除两个端点外)到直角顶点的距离是斜边的一半,则这个点必是斜边的中点.
其中是真命题的有( )
| A、1个 | B、2个 | C、3个 | D、4个 |
| A、减小 | B、增大 |
| C、不变 | D、先减小再增大 |