题目内容
3.| A. | 1个 | B. | 2个 | C. | 3个 | D. | 4个 |
分析 利用抛物线开口方向得到a>0,利用抛物线的对称轴方程得到b=-2a<0,则可对②进行判断;利用抛物线与y轴的交点位置得到c<0,则可对①进行判断;利用抛物线的对称性得到可对③进行判断;利用x=-1时,y<0可对④进行判断.
解答 解:∵抛物线开口向上,
∴a>0,
∵抛物线的对称轴为直线x=-$\frac{b}{2a}$=1,
∴b=-2a<0,所以②正确;
∵抛物线与y轴的交点在x轴下方,
∴c<0,
∴abc>0,所以①正确;
∵点(-2,0)关于直线x=1的对称点的坐标为(4,0),
∴抛物线与x轴的另一个交点坐标为(4,0),所以③正确;
∵x=-1时,y<0,
即a-b+c<0,
∴a+c<b,所以④错误.
故选C.
点评 本题考查了抛物线与x轴的交点:把求二次函数y=ax2+bx+c(a,b,c是常数,a≠0)与x轴的交点坐标问题转化为解关于x的一元二次方程,且两交点为抛物线上的对称点.熟练掌握二次函数图象与系数的关系.
练习册系列答案
相关题目
13.下列计算正确的是( )
| A. | (2x)2=2x2 | B. | x2•x3=x6 | C. | x5÷x3=x2 | D. | (x-2)3=x-5 |
15.
用如图所示的图形绕轴l旋转一周,得到的几何体是( )
| A. | B. | C. | D. |