题目内容
如图,四边形ABCD的对角线相交于点O,AO=CO,请添加一个条件 (只添一个即可),使四边形ABCD是平行四边形.
BO=DO. 解:∵AO=CO,BO=DO,
∴四边形ABCD是平行四边形.
如图,已知矩形ABCD的边长分别为a,b,连接其对边中点,得到四个矩形,顺次连接矩形AEFG各边中点,得到菱形I1;连接矩形FMCH对边中点,又得到四个矩形,顺次连接矩形FNPQ各边中点,得到菱形I2;…如此操作下去,得到菱形In,则In的面积是 .
若一元二次方程有实数解,则a的取值范围是
A.a<1 B.a4 C. a1 D. a 1
已知抛物线 y=mx2+4x+2m与x轴交于点A(,0)、B(,0),且.
(1)求抛物线的解析式.
(2)抛物线的对称轴为l,与y轴的交点为C,顶点为D,点C关于l对称点为E.是否存在 x轴上的点M、y轴上的点N,使四边形DNME的周长最小?若存在,请画出图形(保留作图痕迹),并求出周长的最小值;若不存在,请说明理由.
(3)若点P在抛物线上,点Q在x轴上,当以点D、E、P、Q为顶点的四边形为平行四边形时,求点P的坐标.
如图,△ABD的三个顶点在⊙O上,AB是直径,点C在⊙O上,且∠ABD=52°,则∠BCD等于( )
A. 32° B. 38° C. 52° D. 66°
抛物线y=ax2+bx+2经过点(﹣2,3),则3b﹣6a= .
为倡导“低碳出行”,环保部门对某城市居民日常出行使用交通方式的情况进行了问卷调查,将调查结果整理后,绘制了如下不完整的统计图,其中“骑自行车、电动车”所在扇形的圆心角是162°.
请根据以上信息解答下列问题:
(1)本次调查共收回多少张问卷?
(2)补全条形统计图,在扇形统计图中,“其他”对应扇形的圆心角是 9° 度;
(3)若该城市有32万居民,通过计算估计该城市日常出行“骑自行车、电动车”和“坐公交车”的共有多少人?
已知反比例函数在第一象限的图象如图所示,点A在其图象上,点B为轴正半轴上一点,连接AO、AB,且AO=AB,则S⊿AOB= .
用科学记数法表示0.000031,结果是( )
A.3.1×10-4 B.3.1×10-5 C.0.31×10-4 D.31×10-6