题目内容
考点:平行四边形的性质,全等三角形的判定与性质
专题:证明题
分析:由平行四边形的性质得AD=CB,∠DAE=∠BCF,再由已知条件,可得△ADE≌△CBF,进而得出结论.
解答:证明:如图,∵四边形ABCD是平行四边形,
∴AD∥BC,AD=BC,
∴∠DAE=∠BCF.
又DE∥BF,
∴∠DEF=∠BFE,
∴∠AED=∠CFB.
∴在△ADE与△CBF中,
,
∴△ADE≌△CBF(ASA),
∴AE=CF.
∴AD∥BC,AD=BC,
∴∠DAE=∠BCF.
又DE∥BF,
∴∠DEF=∠BFE,
∴∠AED=∠CFB.
∴在△ADE与△CBF中,
|
∴△ADE≌△CBF(ASA),
∴AE=CF.
点评:本题主要考查平行四边形的性质及全等三角形的判定问题.全等三角形的判定是结合全等三角形的性质证明线段和角相等的重要工具.在判定三角形全等时,关键是选择恰当的判定条件.
练习册系列答案
相关题目
晚上小亮在路灯下散步,在小亮从远处走到灯下,再远离路灯这一过程中,他在地上的影子( )
| A、逐渐变短 |
| B、先变短后变长 |
| C、先变长后变短 |
| D、逐渐变长 |