ÌâÄ¿ÄÚÈÝ
£¨1£©ÇóFµãµÄ×ø±ê£»
£¨2£©Èç¹ûÒ»Ìõ²»ÓëÅ×ÎïÏß¶Ô³ÆÖáÆ½ÐеÄÖ±ÏßÓë¸ÃÅ×ÎïÏß½öÓÐÒ»¸ö½»µã£¬ÎÒÃǰÑÕâÌõÖ±Ïß³ÆÎªÅ×ÎïÏßµÄÇÐÏߣ¬ÒÑÖªÅ×ÎïÏß¹ýµãO£¬F£¬ÇÒÖ±Ïßy=6x-36ÊǸÃÅ×ÎïÏßµÄÇÐÏߣ¬ÇóÅ×ÎïÏߵĽâÎöʽ£»
£¨3£©Ö±Ïßy=k£¨x-3£©-
| 35 |
| 4 |
| 35 |
| 4 |
| 1 |
| PB |
| 1 |
| QB |
| (x2-x1)2+(y2-y1)2 |
¿¼µã£º¶þ´Îº¯Êý×ÛºÏÌâ,Á½µã¼äµÄ¾àÀë
רÌ⣺ѹÖáÌâ
·ÖÎö£º£¨1£©¸ù¾ÝÕÛµþµÄÐÔÖʵõ½AF=AD£¬ËùÒÔÔÚÔÚÖ±½Ç¡÷AOFÖУ¬ÀûÓù´¹É¶¨ÀíÀ´ÇóOFµÄ³¤¶È£¬È»ºóÓɵãFÔÚxÖáÉÏÒ×ÇóµãFµÄ×ø±ê£»
£¨2£©ÒÑÖªÅ×ÎïÏßÓëxÖáµÄÁ½¸ö½»µã×ø±ê£¬ËùÒÔ¿ÉÒÔÉèÅ×ÎïÏߵĽ»µãʽ·½³Ìy=a£¨x-0£©£¨x-6£©£¬¼´y=ax£¨x-6£©£¨a¡Ù0£©£®¸ù¾ÝÅ×ÎïÏßµÄÇÐÏߵ͍ÒåÖª£¬Ö±Ïßy=6x-36Óë¸ÃÅ×ÎïÏßÓÐÒ»¸ö½»µã£¬ÔòÁªÁ¢Á½¸öº¯Êý½âÎöʽ£¬µÃµ½¹ØÓÚxµÄÒ»Ôª¶þ´Î·½³Ìax2-£¨6a+6£©x+36=0£¬Ôò¸Ã·½³ÌµÄ¸ùµÄÅбðʽ¡÷=0£»
£¨3£©ÉèP£¨x1£¬y1£©£¬Q£¨x2£¬y2£©£¬¼ÙÉèx1£¾3£¬x2£¼3£®¸ù¾ÝÅ×ÎïÏßÓëÖ±ÏߵĽ»µã×ø±êµÄÇ󷨵õ½£ºx2-(6+k)x+3k+
=0£¬¸ù¾Ý¸ùÓëϵÊýµÄ¹ØÏµÇóµÃx1+x2=6+k£¬x1•x2=3k+
£®ÀûÓÃÁ½µã¼äµÄ¾àÀë¹«Ê½ÍÆÖª
+
=
•
£¬Ò×Çó
•
=
Ϊ¶¨Öµ£®
£¨2£©ÒÑÖªÅ×ÎïÏßÓëxÖáµÄÁ½¸ö½»µã×ø±ê£¬ËùÒÔ¿ÉÒÔÉèÅ×ÎïÏߵĽ»µãʽ·½³Ìy=a£¨x-0£©£¨x-6£©£¬¼´y=ax£¨x-6£©£¨a¡Ù0£©£®¸ù¾ÝÅ×ÎïÏßµÄÇÐÏߵ͍ÒåÖª£¬Ö±Ïßy=6x-36Óë¸ÃÅ×ÎïÏßÓÐÒ»¸ö½»µã£¬ÔòÁªÁ¢Á½¸öº¯Êý½âÎöʽ£¬µÃµ½¹ØÓÚxµÄÒ»Ôª¶þ´Î·½³Ìax2-£¨6a+6£©x+36=0£¬Ôò¸Ã·½³ÌµÄ¸ùµÄÅбðʽ¡÷=0£»
£¨3£©ÉèP£¨x1£¬y1£©£¬Q£¨x2£¬y2£©£¬¼ÙÉèx1£¾3£¬x2£¼3£®¸ù¾ÝÅ×ÎïÏßÓëÖ±ÏߵĽ»µã×ø±êµÄÇ󷨵õ½£ºx2-(6+k)x+3k+
| 35 |
| 4 |
| 35 |
| 4 |
| 1 |
| PB |
| 1 |
| QB |
| 1 | ||
|
| ||
| 3(x1+x2)-x1x2-9 |
| 1 | ||
|
| ||
9-
|
| 4 |
| 73 |
½â´ð£º½â£º£¨1£©ÓÉÕÛµþµÄÐÔÖʵõ½£º¡÷ADE¡Õ¡÷AFE£¬ÔòAF=AD£®
ÓÖ¡ßAD=10£¬AO=8£¬
¡àOF=
=
=6£¬
¡àF£¨6£¬0£©£»
£¨2£©ÒÀÌâÒâ¿ÉÉè¹ýµãO¡¢FµÄÅ×ÎïÏß½âÎöʽΪy=a£¨x-0£©£¨x-6£©£¬¼´y=ax£¨x-6£©£¨a¡Ù0£©£®
ÒÀÌâÒâÖª£¬Å×ÎïÏßÓëÖ±Ïßy=6x-36ÏàÇУ¬
¡à
£¬
¡àax2-£¨6a+6£©x+36=0 ÓÐÁ½¸öÏàµÈµÄʵÊý¸ù£¬
¡à¡÷=[-£¨6a+6£©]2-4a¡Á36=0£¬
½âµÃa=1£¬
¡àÅ×ÎïÏߵĽâÎöʽΪ y=x2-6x£»
£¨3£©Ö¤Ã÷£ºÉèP£¨x1£¬y1£©£¬Q£¨x2£¬y2£©£¬¼ÙÉèx1£¾3£¬x2£¼3£®
ÒÀÌâÒâµÃ
£¬
µÃ x2-(6+k)x+3k+
=0£¬
¡àx1+x2=6+k£¬x1•x2=3k+
£®
¡ß
+
=
+
=
+
=
(
+
)
=
•
=
•
¼´
•
=4Ϊ¶¨Öµ£®
ÓÖ¡ßAD=10£¬AO=8£¬
¡àOF=
| AF2-OA2 |
| 102-82 |
¡àF£¨6£¬0£©£»
ÒÀÌâÒâÖª£¬Å×ÎïÏßÓëÖ±Ïßy=6x-36ÏàÇУ¬
¡à
|
¡àax2-£¨6a+6£©x+36=0 ÓÐÁ½¸öÏàµÈµÄʵÊý¸ù£¬
¡à¡÷=[-£¨6a+6£©]2-4a¡Á36=0£¬
½âµÃa=1£¬
¡àÅ×ÎïÏߵĽâÎöʽΪ y=x2-6x£»
£¨3£©Ö¤Ã÷£ºÉèP£¨x1£¬y1£©£¬Q£¨x2£¬y2£©£¬¼ÙÉèx1£¾3£¬x2£¼3£®
ÒÀÌâÒâµÃ
|
µÃ x2-(6+k)x+3k+
| 35 |
| 4 |
¡àx1+x2=6+k£¬x1•x2=3k+
| 35 |
| 4 |
¡ß
| 1 |
| PB |
| 1 |
| QB |
| 1 | ||||
|
| 1 | ||||
|
=
| 1 | ||
|
| 1 | ||
|
=
| 1 | ||
|
| 1 |
| x1-3 |
| 1 |
| 3-x2 |
=
| 1 | ||
|
| x1-x2 |
| 3(x1+x2)-x1x2-9 |
=
| 1 | ||
|
| ||
| 3(x1+x2)-x1x2-9 |
¼´
| 1 | ||
|
| ||
9-
|
µãÆÀ£º±¾ÌâÖ÷Òª¿¼²éÁ˶þ´Îº¯Êý½âÎöʽµÄÈ·¶¨¡¢º¯ÊýͼÏó½»µãµÄÇ󷨵È֪ʶµã£®½âÌâʱ£¬ÒªÑ§ÉúÕÆÎÕÊýÐνáºÏµÄÊýѧ˼Ïë·½·¨£®ÁíÍ⣬½â´ð£¨3£©Ìâʱ£¬ÐèÒªÊìϤÁ½µã¼äµÄ¾àÀ빫ʽ£®
Á·Ï°²áϵÁдð°¸
Ïà¹ØÌâÄ¿