题目内容

18.如图,⊙O是△ABC的外接圆,AB=AC,BD是⊙O的直径.PA∥BC,与DB的延长线交于点P.连结AD.
(1)求证:PA是⊙O的切线;
(2)若tan∠ABC=$\frac{1}{2}$,BC=4,求BD与AD的长.

分析 (1)由垂径定理的推论可证明OA⊥BC,又因为PA∥BC,所以AP⊥OA,即PA是⊙O的切线;
(2)设BC和OA相较于点M,由已知条件易求AB的长,由圆周角定理定理可得△DAB是直角三角形,进而可求出BD,AD的长.

解答 (1)证明:∵AB=AC,
∴$\widehat{AB}=\widehat{AC}$,
∴OA⊥BC,
∵PA∥BC,
∴AP⊥OA,
即PA是⊙O的切线;
(2)∵AC=BC,
∴∠ABC=∠ACB,
∵BC=4,OM⊥BC,
∴BM=2,
∵tan∠ABC=$\frac{1}{2}$,
∴AB=$\sqrt{5}$,
∵∠D=∠ACB,tan∠ABC=$\frac{1}{2}$,
∴tan∠D=$\frac{1}{2}$,
∵BD是⊙O的直径,
∴∠BAD=90°,
∴AD=2$\sqrt{5}$,
∴BD=$\sqrt{A{B}^{2}+A{D}^{2}}$=5.

点评 本题考查了切线的判定、圆周角定理以及其推论的运用、垂径定理以及其推论的运用、勾股定理的运用,锐角三角的函数的运用,题目的综合性较强,难度中等,是一道不错的中考试题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网