题目内容
下列四个图中,∠x是圆周角的是( )
C
如图,四边形ABCD中,AB=BC,∠ABC=∠CDA=90°,BE⊥AD于点E,且四边形ABCD的面积为9,则BE=( )
A.2 B.3 C. D.
如图,已知直线交坐标轴于A,B两点,以线段AB为边向上作正方形ABCD,过点A,D,C的抛物线与直线另一个交点为E.
(1)请直接写出点C,D的坐标;
(2)求抛物线的解析式;
(3)若正方形以每秒个单位长度的速度沿射线AB下滑,直至顶点D落在x轴上时停止.设正方形落在x轴下方部分的面积为S,求S关于滑行时间t的函数关系式,并写出相应自变量t的取值范围;
(4)在(3)的条件下,抛物线与正方形一起平移,同时D落在x轴上时停止,求抛物线上C,E两点间的抛物线弧所扫过的面积.
已知⊙O的半径是6,点O到直线l的距离为5,则直线l与⊙O的位置关系是( )
A.相离 B.相切 C.相交 D.无法判断
平面上有⊙O及一点P,点P到⊙O上一点的距离最长为6 cm,最短为2 cm,则⊙O的半径为____________ cm.
如图5118,在⊙O中,弦BC=1,点A是圆上一点,且∠BAC=30°,则⊙O的半径是( )
A.1 B.2 C. D.
如图5125,△ABC内接于⊙O,AB=8,AC=4,D是AB边上一点,P是优弧的中点,连接PA,PB,PC,PD.当BD的长度为多少时,△PAD是以AD为底边的等腰三角形?并加以证明.
已知反比例函数,当时,其图象的两个分支在第一、三象限内;当时,其图象在每个象限内随的增大而增大;
要组织一次篮球联赛,赛制为单循环形式(每两队之间都赛一场),计划安排21场比赛,则参赛球队的个数是__________.