题目内容

如图,四边形ABCD是平行四边形,AE平分∠BAD,交DC的延长线于点E.求证:DA=DE.

证明见解析. 【解析】试题分析:由平行四边形的性质得出AB∥CD,得出内错角相等∠E=∠BAE,再由角平分线证出∠E=∠DAE,即可得出结论. 试题解析:∵四边形ABCD是平行四边形,∴AB∥CD,∴∠E=∠BAE,∵AE平分∠BAD,∴∠BAE=∠DAE,∴∠E=∠DAE,∴DA=DE.
练习册系列答案
相关题目

已知三角形的两边为3和4,则第三边a的取值范围是________.

1<a<7 【解析】根据三角形的三边关系:两边之和大于第三边,两边之差小于第三边,得4-3<a<4+3,即1<a<7. 故答案为:1<a<7.

如图,点O是△ABC内一点,连结OB、OC,并将AB、OB、OC、AC的中点D、E、F、G依次连结,得到四边形DEFG.

(1)求证:四边形DEFG是平行四边形;

(2)若M为EF的中点,OM=3,∠OBC和∠OCB互余,求DG的长度.

(1)证明见解析;(2)6. 【解析】试题分析:(1)根据三角形的中位线平行于第三边并且等于第三边的一半可得EF∥BC且EF=BC,DG∥BC且DG=BC,从而得到DE=EF,DG∥EF,再利用一组对边平行且相等的四边形是平行四边形证明即可; (2)先判断出∠BOC=90°,再利用直角三角形斜边的中线等于斜边的一半,求出EF即可. 试题解析:(1)∵D、G分别是AB、AC的中点,...

如图,在?ABCD中,BF平分∠ABC,交AD于点F,CE平分∠BCD,交AD于点E,若AB=6,EF=2,则BC的长为(  )

A. 8 B. 10 C. 12 D. 14

B 【解析】试题分析:根据平行四边形的性质可知AB=CD,AD∥BC,AD=BC,然后根据平行线的性质和角平分线的性质可知AB=AF,DE=CD,因此可知AF+DE=AD+EF=2AB=12,解得AD=BC=12-2=10. 故选:B.

如图,在四边形ABCD中,∠ABC=90°,AC=AD,M,N分别为AC,CD的中点,连接BM,MN,BN.

(1)求证:BM=MN;

(2)∠BAD=60°,AC平分∠BAD,AC=2,求BN的长.

(1)证明见解析;(2) 【解析】试题分析:(1)在△CAD中,由中位线定理得到MN∥AD,且MN=AD,在Rt△ABC中,因为M是AC的中点,故BM=AC,即可得到结论; (2)由∠BAD=60°且AC平分∠BAD,得到∠BAC=∠DAC=30°,由(1)知,BM=AC=AM=MC,得到∠BMC =60°.由平行线性质得到∠NMC=∠DAC=30°,故∠BMN90°,得到,再由MN=...

如图,在?ABCD中,E为边CD上一点,将△ADE沿AE折叠至△AD′E处,AD′与CE交于点F.若∠B=52°,∠DAE=20°,则∠FED′的大小为________.

36° 【解析】试题分析:∵四边形ABCD是平行四边形, ∴∠D=∠B=52°, 由折叠的性质得:∠D′=∠D=52°,∠EAD′=∠DAE=20°, ∴∠AEF=∠D+∠DAE=52°+20°=72°,∠AED′=180°-∠EAD′-∠D′=108°, ∴∠FED′=108°-72°=36°; 故答案为:36°.

如图,?ABCD的对角线AC,BD相交于点O,已知AD=8,BD=12,AC=6,则△OBC的周长为(   )

A. 13 B. 17 C. 20 D. 26

B 【解析】试题分析:由平行四边形的性质得出OA=OC=3,OB=OD=6,BC=AD=8,即可求出△OBC的周长. 【解析】 ∵四边形ABCD是平行四边形, ∴OA=OC=3,OB=OD=6,BC=AD=8, ∴△OBC的周长=OB+OC+AD=3+6+8=17. 故选:B.

直线y=kx+b与抛物线y=x2交于A(x1,y1)、B(x2,y2)两点,当OA⊥OB时,直线AB恒过一个定点,该定点坐标为_______________________.

(0,4) 【解析】【解析】 ∵直线y=kx+b与抛物线y=x2交于A(x1,y1)、B(x2,y2)两点,∴kx+b=, 化简,得 x2﹣4kx﹣4b=0,∴x1+x2=4k,x1x2=﹣4b. 又∵OA⊥OB,∴ , 解得,b=4,即直线y=kx+4,故直线恒过顶点(0,4). 故答案为:(0,4).

从标号分别为1,2,3,4,5的5张卡片中,随机抽取1张.下列事件中,必然事件是(  )

A. 标号小于6 B. 标号大于6 C. 标号是奇数 D. 标号是3

A 【解析】试题分析:标号小于6是必然事件,标号大于6是不可能事件,标号是奇数是是随机事件,标号是3的事件是随机事件. 故选:A

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网