题目内容

如图,在?ABCD中,E为边CD上一点,将△ADE沿AE折叠至△AD′E处,AD′与CE交于点F.若∠B=52°,∠DAE=20°,则∠FED′的大小为________.

36° 【解析】试题分析:∵四边形ABCD是平行四边形, ∴∠D=∠B=52°, 由折叠的性质得:∠D′=∠D=52°,∠EAD′=∠DAE=20°, ∴∠AEF=∠D+∠DAE=52°+20°=72°,∠AED′=180°-∠EAD′-∠D′=108°, ∴∠FED′=108°-72°=36°; 故答案为:36°.
练习册系列答案
相关题目

不等式组的解集是(  )

A. x<3 B. 3<x<4 C. x<4 D. 无解

B 【解析】解不等式x﹣1>2,得:x>3, ∴不等式组的解集为:3<x<4, 故选:B.

如图,在△ABC中,点D、E、F分别是边AB、BC、CA上的中点,且AB=6cm,AC=8cm,则四边形ADEF的周长等于 cm.

14. 【解析】 试题分析:∵D、E分别AB、BC的中点,∴AD=AB,DE=AC.同理AF=AC,EF=AB.∴l四边形ADEF=AD+DE+EF+AF=(AB+AC+AB+AC)=AB+AC=14cm.

在下列条件中,能够判定一个四边形是平行四边形的是(  )

A. 一组对边平行,另一组对边相等

B. 一组对边相等,一组对角相等

C. 一组对边平行,一条对角线平分另一条对角线

D. 一组对边相等,一条对角线平分另一条对角线

C 【解析】A、错误.这个四边形有可能是等腰梯形. B、错误.不满足三角形全等的条件,无法证明相等的一组对边平行. C、正确.可以利用三角形全等证明平行的一组对边相等.故是平行四边形. D、错误.不满足三角形全等的条件,无法证明相等的一组对边平行. 故选C.

如图,四边形ABCD是平行四边形,AE平分∠BAD,交DC的延长线于点E.求证:DA=DE.

证明见解析. 【解析】试题分析:由平行四边形的性质得出AB∥CD,得出内错角相等∠E=∠BAE,再由角平分线证出∠E=∠DAE,即可得出结论. 试题解析:∵四边形ABCD是平行四边形,∴AB∥CD,∴∠E=∠BAE,∵AE平分∠BAD,∴∠BAE=∠DAE,∴∠E=∠DAE,∴DA=DE.

如图,DE是△ABC的中位线,过点C作CF∥BD交DE的延长线于点F,则下列结论正确的是(  )

A. EF=CF B. EF=DE C. CF<BD D. EF>DE

B 【解析】试题分析:∵DE是△ABC的中位线, ∴DE∥BC,DE=BC, ∵CF∥BD, ∴四边形BCFD是平行四边形, ∴DF=BC,CF=BD, ∴EF=DF-DE=BC-DE=BC=DE. 故选B.

抛物线y=﹣x2+bx+c上部分点的横坐标x,纵坐标y的对应值如下表所示:

x

﹣2

﹣1

0

1

2

y

0

4

6

6

4

从上表可知,下列说法中,错误的是( )

A. 抛物线于x轴的一个交点坐标为(﹣2,0)

B. 抛物线与y轴的交点坐标为(0,6)

C. 抛物线的对称轴是直线x=0

D. 抛物线在对称轴左侧部分是上升的

C 【解析】【解析】 当x=﹣2时,y=0,∴抛物线过(﹣2,0),∴抛物线与x轴的一个交点坐标为(﹣2,0),故A正确; 当x=0时,y=6,∴抛物线与y轴的交点坐标为(0,6),故B正确; 当x=0和x=1时,y=6,∴对称轴为x=,故C错误; 当x<时,y随x的增大而增大,∴抛物线在对称轴左侧部分是上升的,故D正确; 故选C.

下列事件中,属于必然事件的是(  )

A. 打开电视,正在播放《新闻联播》 B. 抛掷一次硬币正面朝上

C. 袋中有3个红球,从中摸出一球是红球 D. 阴天一定下雨

C 【解析】试题解析:A.打开电视,正在播放《新闻联播》是随机事件,因为也可能播放其它内容; B.抛掷一次硬币正面朝上是随机事件,也可能反面朝上; C. 袋中有3个红球,从中摸出一球是红球,是必然事件,因为袋子中只有红球,无论怎么摸,只能摸出红球; D.阴天一定下雨是随机事件,也可能只阴天不下雨. 故选C.

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网