题目内容
3.一元二次方程(x+1)2=27的解为( )| A. | x1=2,x2=4 | B. | x1=2,x2=-4 | ||
| C. | x1=1+3$\sqrt{3}$,x2=1-3$\sqrt{3}$ | D. | x1=-1+3$\sqrt{3}$,x2=-1-3$\sqrt{3}$ |
分析 把方程两边开方得到x+1=±3$\sqrt{3}$,然后解两个一次方程即可.
解答 解:两边开方,得x+1=±3$\sqrt{3}$,
所以x1=-1+3$\sqrt{3}$,x2=-1-3$\sqrt{3}$.
故选D.
点评 本题考查了解一元二次方程-直接开平方法:形如x2=p或(nx+m)2=p(p≥0)的一元二次方程可采用直接开平方的方法解一元二次方程.
练习册系列答案
相关题目