题目内容

8.如图,直线y=k1x+1与双曲线y=$\frac{{k}_{2}}{x}$相交于P(1,m),Q(-2,-1)两点;
(1)求m的值;
(2)若A1(x1,y1),A2(x2,y2),A3(x3,y3)为双曲线上的三点,且x1<x2<0<x3,请直接写出y1,y2,y3的大小关系式;
(3)观察图象,请直接写出不等式k1x+1>$\frac{{k}_{2}}{x}$的解集.

分析 (1)把把Q(-2,-1)代入反比例函数的解析式求得函数解析式,然后把P代入求得m的值;
(2)根据反比例函数的图象,根据自变量的相对位置,结合图象即可确定;
(3)不等式k1x+1>$\frac{{k}_{2}}{x}$的解集就是对相同的x的值,一次函数的图象在上边的部分x的范围.

解答 解:(1)把Q(-2,-1)代入y=$\frac{{k}_{2}}{x}$得:k2=2,
则反比例函数的解析式是y=$\frac{2}{x}$,
把P(1,m)代入反比例函数的解析式得:m=2;
(2)根据图象可得:y2<y1<y3
(3)根据图象可得,解集是:-2<x<0或x>1.

点评 本题综合考查一次函数与反比例函数的图象与性质,同时考查用待定系数法求函数解析式.本题需要注意无论是自变量的取值范围还是函数值的取值范围,都应该从交点入手思考.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网